National Academies Press: OpenBook

The Power of Renewables: Opportunities and Challenges for China and the United States (2010)

Chapter: Appendix C: Life Cycle Assessment of Biomass Power in China

« Previous: Appendix B: Life Cycle Assessment of Solar Thermal Power Technology in China
Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×

Appendix C
Life Cycle Assessment of Biomass Power in China

As a renewable energy, biomass is generally considered CO2-neutral. This is particularly the case with regard to agricultural residues, which are periodically planted and harvested. During the growth, these plants have removed CO2 from the atmosphere for photosynthesis, which is released again during combustion. Although the direct emissions of SO2 and NOx at generation stage are smaller than from fossil fuels because of the relatively low nitrogen and sulfur content of biomass, its environmental impact cannot be ignored from the perspective of life cycle assessment. The main reason is that cultivation, harvesting, transportation, and pre-treatment of biomass are energy-consuming processes that are accompanied by significant emissions.

At present, there are three mature technologies of biomass power generation: direct-combustion, gasification, and co-firing. The environmental capacity and energy consumption at all stages of generation process could be understood comprehensively using life cycle assessment methodology, thereby considering adopting measures to conserve resources and protect the environment. Figure C-1 presents a simplified process-flow diagram for power generation using biomass, beginning with plant cultivation and ending at the generation stage.

Throughout the life cycle assessment process, the energy consumption and pollutant emissions depend on a number of factors, which mainly include the biomass feedstock, type of technology used, and the boundary conditions chosen for the system. When it comes to the assessment of power generation from agricultural residues, whether the life cycle assessment includes the plant cultivation process may have a significant impact on the results. In the following assessment, the energy consumption and pollutant emissions from cultivation were included. Figures C-2 and C-3 show the assessment results for a 25 MW biomass power plant using direct-

Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
FIGURE C-1 Process flow-diagram of biomass combustion for electricity.

FIGURE C-1 Process flow-diagram of biomass combustion for electricity.

Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
FIGURE C-2 Life cycle CO2 emissions for biomass power generation in China.

FIGURE C-2 Life cycle CO2 emissions for biomass power generation in China.

FIGURE C-3 Life cycle energy consumption for biomass power generation in China.

FIGURE C-3 Life cycle energy consumption for biomass power generation in China.

combustion. We can see that biomass cultivation is the main stage responsible for emissions, producing more than 70 percent of the CO2, while the emissions in the collection, transportation, and pre-treatment stages are much lower. Considering the consumption of fossil fuel, the cultivation stage still dominates, due mainly to fuel used in the production of nitrogen fertilizer and the use of diesel.

As mentioned above, there are three technology routes for biomass power generation. In China, direct-combustion generation currently is the most developed technology. Due to lack of policy support, co-firing only accounts for a very small share. In addition, most gasification power generation projects are only in the demonstration phase. Different biomass generation systems were compared with respect to energy conversion efficiency and CO2 emissions. As shown in Figure C-4,

Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
FIGURE C-4 Relative efficiencies for direct-combustion, gasification, and biomass co-firing power plants.

FIGURE C-4 Relative efficiencies for direct-combustion, gasification, and biomass co-firing power plants.

the co-firing has the highest energy efficiency, followed by gasification and direct-firing. The scale of power generation is a key factor for energy efficiency. For direct-combustion and gasification, the scale of power plant is limited because of low density of biomass. In China, the largest installed capacity is 25 MW for direct-combustion power plants and 6 MW for gasification. The generation efficiency of both is less than 30 percent. In contrast, the scale of co-firing plants is not significantly influenced by biomass resources because only part of the coal is substituted by biomass. Values shown in Figure C-4 reflect operating experience with a 140 MW co-firing power plant for which the generation efficiency reached 36.13 percent, which is much higher than the efficiency of direct-combustion and gasification. Because the 6 MW gasification power plant studied in Figure C-4 included a heat recovery and generation system, the system efficiency is a little higher than that of the 25 MW direct-combustion plant. The CO2 reduction rates of all three systems (relative to the coal they displace) are more than 95 percent, suggesting that the CO2 reduction effect of biomass power generation is considerable.

In comparison to fossil-fuel and nuclear power plants, renewable power sources also require a large amount of land for a given amount of generating capacity. Land-use requirements for large-scale hydropower and concentrating

Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×

solar thermal power are especially high. On the other hand, some renewable technologies, such as photovoltaics, can be deployed in locations such as residential and warehouse roofs, where they create little interference with other land uses and are close to the point of use of the electricity. Although producing power from cultivated feedstock is very land intensive, land-use requirements are much lower if waste biomass is used. Land use can serve as a rough proxy for other impacts of new development, including impacts on ecosystems, cultural and historical resources, scenery, and loss of agricultural lands. Because of relatively high land-use intensity for most renewable electricity generating technologies, careful assessment of local environmental, cultural, and aesthetic impacts should be required before large projects are developed.

Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×

This page intentionally left blank.

Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
Page 227
Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
Page 228
Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
Page 229
Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
Page 230
Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
Page 231
Suggested Citation:"Appendix C: Life Cycle Assessment of Biomass Power in China." National Academy of Engineering and National Research Council. 2010. The Power of Renewables: Opportunities and Challenges for China and the United States. Washington, DC: The National Academies Press. doi: 10.17226/12987.
×
Page 232
Next: Appendix D: Environmental Considerations for Photovoltaics »
The Power of Renewables: Opportunities and Challenges for China and the United States Get This Book
×
Buy Paperback | $49.00 Buy Ebook | $39.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels.

Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals.

Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!