National Academies Press: OpenBook

Transforming Combustion Research through Cyberinfrastructure (2011)

Chapter: Appendix A: The GRIMech Model

« Previous: Appendixes
Suggested Citation:"Appendix A: The GRIMech Model." National Research Council. 2011. Transforming Combustion Research through Cyberinfrastructure. Washington, DC: The National Academies Press. doi: 10.17226/13049.
×

Appendix A
The GRIMech Model

Approximately 25 years ago, a project supported by the Gas Research Institute (GRI) in Chicago led to a common kinetic model for the combustion of natural gas, which is dominated by methane and has small levels of other gaseous components such as ethane, propane, CO, and H2. A team of about a dozen combustion-chemistry experts collected extensive libraries of experimental and kinetic modeling papers and models of natural gas combustion. This team met several times a year, exchanged recommendations and opinions about which experiments were most reliable, carried out theoretical studies of important reactions and chemical species, and developed a fully detailed kinetic model—one that has been used for the past 20 years by researchers around the world. All of the information was assembled in a series of computer files, in a common format, with detailed descriptions of the data and methods used to optimize the resulting models, with significant curation of the entire system of data and evaluations.

The resulting model was called GRIMech (Frenklach, 2007), and over a period of years, several updates were released to the public. The benefits of the model included the consensus evaluations and recommendations of the panel of experts, the incorporation of modern data-curation and -evaluation processes in the model’s development, and the broad range of applicability of the resulting model. Its availability for no cost was also an obvious factor in its wide acceptance and common use.

Suggested Citation:"Appendix A: The GRIMech Model." National Research Council. 2011. Transforming Combustion Research through Cyberinfrastructure. Washington, DC: The National Academies Press. doi: 10.17226/13049.
×

The degree of acceptance of this process led to the widespread use of GRIMech. It was particularly valuable for researchers who knew that their work required a reliable kinetic mechanism for methane or natural gas combustion chemistry, but who were not personally experienced or knowledgeable about combustion kinetics. GRIMech gave these people a tool that was ready to use, had been thoroughly tested by combustion-chemistry experts, and was freely available in a common and convenient format.

Although details of GRIMech are no longer considered to be leading-edge kinetic expertise, the model continues to be used extensively, for exactly the same reasons that made it successful 20 years ago—namely, easy and free access; thorough testing, evaluation, and validation; and common acceptance. This mechanism provided a combustion simulation tool of significant value that unified the international combustion community and accelerated combustion progress for 20 years. It is interesting to note that GRIMech shared most of these attractive features with the CHEMKIN software, described in Appendix B of this report. For more than 10 years, a large fraction of the combustion community used one or the other or both of these research tools in their daily efforts, and the community prospered and made significant advances in all types of combustion research, experimental and theoretical, as well as in computer modeling. These were two essential parts of an effective combustion cyberinfrastructure, and they form a template for a possible new cyberinfrastructure based on more modern software tools and chemistry models for practical petroleum-based fuels and biofuels for future combustion systems.

The GRIMech panel of experts envisioned extending this approach to larger and more complex hydrocarbons and other fuels, but the disappearance of the GRI as a research funding agency and the lack of other continuing support commitments made further extensions impossible. A combustion cyberinfrastructure would make these extensions possible. If the GRIMech history is any predictor, such a set of tools, enabled by a combustion cyberinfrastructure, would again have the same type of generally unifying results. It would also significantly accelerate the pace of progress in combustion research and lead to greatly improved combustion systems.

REFERENCE

Frenklach, M. 2007. “Transforming Data into Knowledge—Process Informatics for Combustion Chemistry.” Proceedings of the Combustion Institute, Vol. 31, pp. 125-140.

Suggested Citation:"Appendix A: The GRIMech Model." National Research Council. 2011. Transforming Combustion Research through Cyberinfrastructure. Washington, DC: The National Academies Press. doi: 10.17226/13049.
×
Page 81
Suggested Citation:"Appendix A: The GRIMech Model." National Research Council. 2011. Transforming Combustion Research through Cyberinfrastructure. Washington, DC: The National Academies Press. doi: 10.17226/13049.
×
Page 82
Next: Appendix B: CHEMKIN Chemical Kinetics Software »
Transforming Combustion Research through Cyberinfrastructure Get This Book
×
 Transforming Combustion Research through Cyberinfrastructure
Buy Paperback | $31.00 Buy Ebook | $24.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Combustion has provided society with most of its energy needs for millenia, from igniting the fires of cave dwellers to propelling the rockets that traveled to the Moon. Even in the face of climate change and the increasing availability of alternative energy sources, fossil fuels will continue to be used for many decades. However, they will likely become more expensive, and pressure to minimize undesired combustion by-products (pollutants) will likely increase.

The trends in the continued use of fossil fuels and likely use of alternative combustion fuels call for more rapid development of improved combustion systems. In January 2009, the Multi-Agency Coordinating Committee on Combustion Research (MACCCR) requested that the National Research Council (NRC) conduct a study of the structure and use of a cyberinfrastructure (CI) for combustion research. The charge to the authoring committee of Transforming Combustion Research through Cyberinfrastructure was to: identify opportunities to improve combustion research through computational infrastructure (CI) and the potential benefits to applications; identify necessary CI elements and evaluate the accessibility, sustainability, and economic models for various approaches; identify CI that is needed for education in combustion science and engineering; identify human, cultural, institutional, and policy challenges and how other fields are addressing them. Transforming Combustion Research through Cyberinfrastructure also estimates the resources needed to provide stable, long-term CI for research in combustion and recommends a plan for enhanced exploitation of CI for combustion research.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!