5

Monitoring and Assessing
Trends in Science and Technology

The principal goal of the 2010 workshop was to draw on the expertise of the international scientific community to provide a broad, independent picture of the state of science and technology (S&T) research and development relevant to the Biological and Toxin Weapons Convention (BWC). In Chapters 2-4, the committee examined three key trends that emerged from the meeting: the rapid pace of developments, the increasing diffusion of research capacity and applications, and the integration of multiple disciplines that characterizes many areas of life sciences research. This chapter focuses on how the insights gained through processes like the workshop can be analyzed and applied.

Engaging a range of expertise within the scientific community, from academia, industry, and government, can contribute to efforts both to monitor the state of science and technology and to assess the implications of developments for the scope and operations of the BWC. Taking account of developments in S&T in ways that are useful to the BWC will require States Parties and experts in Geneva to have a reasonable grasp of the state of the science as it evolves, including a sense of the forces that drive different areas at different rates and the inevitable roadblocks that hamper progress. Input from experts from the broader scientific community, in conjunction with government technical experts, who often are also practicing scientists, may be particularly suited to the task of understanding these factors. Although there is a role for the scientific community in helping to assess the implications of S&T for the treaty, this is clearly also a matter for discussion among government technical experts, and



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 93
5 Monitoring and Assessing Trends in Science and Technology T he principal goal of the 2010 workshop was to draw on the exper- tise of the international scientific community to provide a broad, independent picture of the state of science and technology (S&T) research and development relevant to the Biological and Toxin Weapons Convention (BWC). In Chapters 2-4, the committee examined three key trends that emerged from the meeting: the rapid pace of developments, the increasing diffusion of research capacity and applications, and the integration of multiple disciplines that characterizes many areas of life sci- ences research. This chapter focuses on how the insights gained through processes like the workshop can be analyzed and applied. Engaging a range of expertise within the scientific community, from academia, industry, and government, can contribute to efforts both to monitor the state of science and technology and to assess the implications of developments for the scope and operations of the BWC. Taking account of developments in S&T in ways that are useful to the BWC will require States Parties and experts in Geneva to have a reasonable grasp of the state of the science as it evolves, including a sense of the forces that drive different areas at different rates and the inevitable roadblocks that ham- per progress. Input from experts from the broader scientific community, in conjunction with government technical experts, who often are also practicing scientists, may be particularly suited to the task of understand- ing these factors. Although there is a role for the scientific community in helping to assess the implications of S&T for the treaty, this is clearly also a matter for discussion among government technical experts, and 93

OCR for page 93
94 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION ultimately by States Parties when discussions surrounding S&T move into the realm of policy options and potential action. This chapter has three major sections. The first section examines the forces mentioned above that broadly affect how S&T trends develop, including the differential impact of drivers such as commercial interests, some of the barriers to the distribution of scientific knowledge and capac- ity, and other factors that may present current roadblocks to progress. Tracking and analyzing the impact of these factors could be considered areas of potential interest for future monitoring of S&T trends. In the sec- ond section, the committee draws on the workshop results to highlight the relevance of S&T to the BWC’s provisions. The final section discusses possible roles for the scientific community in contributing to future BWC discussions of S&T. The chapter ends with the committee’s overall find - ings and conclusions. 5.1 DRIVERS AND ROADBLOCKS FOR S&T DEVELOPMENT 5.1.1 Drivers The difficulty of attempting to predict future trends and develop- ments is well recognized, and it was noted during the workshop that one should always prepare to be surprised. With this caveat in mind, the committee did not attempt to forecast the state of life sciences knowledge in the years ahead. However, the committee did discuss some of the common drivers of life sciences research, and these are illustrated with brief examples, below. S&T areas that are being pushed forward strongly by these drivers would be expected to continue to rapidly advance. The more general impetus for S&T advances arising from investments as part of broader national development strategies was discussed in Chapter 3 (see Section 3.1.2). Investments are important, but the amount of money invested is not necessarily a sign that one field will advance more rapidly than another. To date, for example, the substantial investments in systems and synthetic biology have yielded only limited commercial products. Commercial markets are a powerful driver of life sciences research, in the healthcare and pharmaceutical industries as well as in sectors such as agriculture and energy. Several of the S&T areas discussed during the workshop appear to have commercial drivers for further development. These include diagnostic biosensors, advanced delivery technologies for controlled release and targeted delivery of biological molecules, pro- tein production technology, and the potential applications derived from omics knowledge in areas such as personalized medicine. Fields such as synthetic biology, which likely have future medical applications, are also expected to have valuable applications in areas such as bioenergy and food production (Lee et al., 2008; NRC, 2009e). Developments in

OCR for page 93
95 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY neuroscience, particularly advances in the mind-machine interface, may clearly benefit patients with medical disabilities such as paralysis or loss of limbs. However, an interesting commercial driver in this field may also be the entertainment industry. The ability to remotely control computer interfaces and to produce sensations such as motion could be integrated into videogames to heighten the experience. The entertainment company Sony, for example, has reportedly filed a patent application for a device that emits ultrasound pulses to influence brain waves (Hogan and Fox, 2005). Many technologies that underpin and enable modern life sciences research, such as powerful computer networks and mobile and Internet- based communications systems, are broadly applicable far beyond the life sciences. Advances in these areas are driven by numerous markets and applications, appear to have moved forward especially rapidly, and would be expected to continue advancing. Other areas of S&T lack strong commercial drivers and therefore rely on government investments to move forward. In at least some countries, government investments in defense-related research can be strong driv - ers for some areas of basic and applied research. The most dramatic case may be the United States’ investments in biodefense; by one estimate, the government has spent $19 billion on research out of a total biodefense budget of $60 billion (Kaiser, 2011:1214). Another arena where government and also philanthropic investments are critical is public health. Public health applications in general, including the development of new vaccines and antibiotics, typically exhibit market cost/benefit conditions that make them less attractive to the pharmaceutical industry absent government incentives. These challenges include the cost of R&D expenses compared to likely market size and profits and regulatory and liability issues, among others (Jarvis, 2008; Kieny et al., 2004; Smith et al., 2009). These same market challenges affect the development of vaccines and medical countermeasures against biothreat agents, because diseases of concern as potential bioweapons are often not endemic in the United States or Europe, the immune correlates of protection may not be well known, suitable nonhuman animal models may not exist, and there is no guarantee that a particular product would be needed given the hypothetical nature of a future bioweapons attack. Therefore, developing a licensable product with no clear end market may be challenging from both scientific and regulatory standpoints. As a result, incentives such as guaranteed govern- ment purchase orders or vouchers for priority regulatory review of another (usually more lucrative) company product have been used to help stimulate this field. Public health disease surveillance networks are another area with limited commercial markets but clear national and international benefits and that also rely on government and nonprofit investments. Overall, areas of technology with strong commercial drivers seem likely to develop particularly rapidly, although the committee noted

OCR for page 93
96 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION that the optimum combination of variables for a particular commercial application may not be the same as that for a dedicated public health or biosecurity application. In these cases, government investments may be required to adapt technologies to meet the specific combinations of needed operating conditions. For areas that do not appear to have strong commercial market drivers, government investments may also be particu- larly important in advancing the field. 5.1.2 Roadblocks Discussions of advances in science and technology can create the impression of a dynamic process characterized by uninterrupted progress, sometimes at daunting speed. As anyone engaged in research appreciates all too well, there can be many failures on the way to eventual success, and the path is not always predictable. Entire fields may face particular technical challenges that, until surmounted, represent significant road- blocks to progress. Once overcome, however, progress may be rapid (see Box 5.1 for some well-known examples). A number of current roadblocks were discussed in Chapter 2 and could be useful focal points for efforts to monitor areas of S&T relevant to the BWC. Other challenges may reside in the nature of how science is done or used, and as they change there can be impacts on how easily science is used and applied, whether for beneficial or malicious purposes. That is the subject of the next section. 5.1.2.1 The Process of Knowledge Creation and Barriers to Knowledge Transfer From Data to Knowledge As discussed in Chapter 2, advancing technologies within the omics fields, for example, generate large amounts of raw, discrete data (e.g., the results of nucleotide or amino acid sequencing, DNA and protein microarray results, nuclear magnetic resonance [NMR] and mass spectra, x-ray crystallographic images). These streams of data need to be man- aged, analyzed, and put in context in order to be converted to useful information. This process of converting data to information might include processing and representing data as graphs and charts to reveal patterns, for example. Because of the enormous volumes of data currently being generated, however, life scientists increasingly rely on information science (bioinformatics) and computer science expertise to create the databases, theories, and algorithms needed to analyze and transform these large data sets into information. A third and critical component is the organization, analysis, and conversion of biological information into knowledge, which involves a human dimension. This process of knowledge creation draws

OCR for page 93
97 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY Combining multiple sources of information and knowledge (both tacit and explicit) Articulating and documenting as new explicit knowledge Data Information Knowledge Discussions and Experience meetings Previously acquired Written knowledge materials Insight FIGURE 5.1 The process of knowledge creation. Figure 5-1 on multiple pieces of information as well as previously acquired knowl - edge and experience to enable a scientist to interpret the information, give it meaning, and make it usable for a specific purpose. Another distinction that can be drawn is between the two forms of knowledge referred to as “explicit” and “tacit.” Explicit knowledge, which is frequently factual in nature, can be expressed in a relatively straightfor- ward fashion and transmitted to another person. Tacit knowledge, on the other hand, resides within individuals, is based on experience and learn - ing through doing, and is more difficult to convey. It has been stated that “practical knowledge has two dimensions—a visible, codified component that resembles the tip of an iceberg. The larger but crucial tacit component which lies submerged consists of values, procedures and tricks of the trade and cannot be easily documented or codified” (Rangachari, 2008). 1 Figure 5.1 depicts this process of conversion from data to information, incorporation of multiple sources of information and experience into tacit knowledge, and then externalization of that knowledge into new, explicit knowledge that can be communicated to others. The understanding and appreciation of the role of tacit knowledge draws on contributions from the social and behavioral sciences, particularly the field of science and technology studies (Hackett et al., 2007). Scientific Communication and Tacit Knowledge Scientists attempt to convert the knowledge they possess into explicit forms to be shared with others, for example through conference presen - tations and the publication of journal articles. Not all aspects of tacit knowledge are easy to express and convey explicitly, however, and scien - tific training still makes use of an interactive apprenticeship process that draws on personal interactions with advisors and other experts in com- 1 In some cases, possessors of such tacit knowledge (either corporate or individuals) may not want to document or codify their knowledge, or in the case of the government employee, may be directed not to provide such information in a public report.

OCR for page 93
98 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION munities of practice to convey both forms of knowledge to new trainees. A large body of literature exists on the study of knowledge creation and conversion (Bathelt et al., 2004; Cross et al., 2001; Nonaka, 1994; Roberts, 2000), and it is not the committee’s purpose to summarize the entire field here. However, the committee noted two points especially relevant to trends in S&T: • Data does not equal information does not equal knowledge. There is a significant time and processing component in the conversion of data from scientific experiments to usable knowledge, as well as a human dimension to this transformation. Although modern life sciences are rapidly generating large amounts of data, these data do not immediately or directly advance understanding of biologi- cal processes or provide the ability to accomplish a specific task. • Challenges and bottlenecks can exist in the conversion process from data to knowledge. The complexity of biological systems, complications in distinguishing data from background noise, and other similar factors, create significant challenges in developing algorithms and models that help convert data to usable information, a point also highlighted by the workshop presentations (Pitt, 2010a). The dif- ficulty in rendering certain aspects of tacit knowledge explicit and conveying it to others can create a bottleneck in the second step of the pathway, that is, the conversion of information to knowledge. The extent to which tacit knowledge as described in the second bullet might help to prevent the misuse of S&T is briefly discussed in the next section. Tacit Knowledge as a Potential Roadblock to Misuse of Life Sciences Research Several authors have highlighted the roles of tacit knowledge and of social and organizational factors in achieving research success, including the creation of biological weapons (Ben Ouagrham-Gormley and Vogel, 2010; Suk et al., 2011; Vogel, 2006). A subset of tacit knowledge, for exam- ple, deemed “intangible technology,” is subject to export controls by a number of countries and international groups.2 It has also been suggested that tacit knowledge could serve as a road- block to gaining weapons-relevant capabilities (Vogel, 2006). The study 2 The relationship between tacit knowledge and intangible technology is somewhat com - plicated because for export control purposes—where the term “intangible technology” is most relevant for BWC implementation—intangible technology also includes documenta - tion, plans, etc., that are not part of most understandings of tacit knowledge.

OCR for page 93
99 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY of the research that led to the chemical synthesis of polio virus DNA and use of this DNA to create viral polio particles (Cello et al., 2002), which drew the attention of the biosecurity community and aroused concerns that the method could be harnessed by persons seeking to create harm - ful viruses, concluded that it could not be duplicated because of the tacit knowledge required to prepare the virus. Understanding the influence of barriers beyond extrinsic scientific knowledge on success in bioweapons- related research emerged from historical studies of the Soviet biological weapons program, where different facilities had different outcomes that correlated with differences in organizational style and research culture (Ben Ouagrham-Gormley and Vogel, 2010). Similarly, a study of scientists in biotechnology and pharmaceutical companies suggested that teams of scientists contributing different types of human capital were important for success (Hess and Rothaermel, 2010). The authors observed that “star” scientists served as important sources of intellectual capital, including tacit and exploratory knowledge and networks of connectedness. How - ever, the authors also reported that the importance of these star scientists decreased “as the knowledge associated with biotechnology was dissemi- nated through the scientific community” (Hess and Rothaermel, 2010:10), suggesting that the significance of different types of tacit knowledge may change as S&T areas mature and develop. Multiple factors appear to be important to the success of high-tech research, and thus “technology is much more than the sum of its mate - rial and informational aspects. Social contingencies and tacit knowledge, serendipity and unpredictability, institutional memory, and many other factors are essential to the successful design and deployment of any given technology” (Suk et al., 2011). Explicit forms of scientific information are now readily available through open access journal articles and databases, and individual and group communication and collaboration have been made easier by the Internet, social media platforms, and mobile devices. Furthermore, small communities of amateur biologists have been estab - lished around the world. As these new developments continue to shape the culture of science, consideration of the extent to which tacit biological knowledge and other factors continue to create roadblocks to the potential misuse of biology or creation of a biological weapon may be useful. Both the business and online learning communities have studied ways to convey tacit knowledge effectively within organizations and to students online (Anderson, 2008; Cummings and Teng, 2003; Nonaka, 1994). Lessons drawn from these groups’ experiences may help in assess- ing the significance of knowledge transfer barriers. If specific social media or other tools have proven particularly effective at conveying tacit knowl- edge or at integrating multiple streams of knowledge to tackle complex problems in the business or education communities, then monitoring whether these types of tools become commonly used within the scientific

OCR for page 93
100 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION community may provide a sense of when roadblocks related to scientific knowledge transfer are being overcome. The increasing numbers and availability of kits and other tools to carry out laboratory procedures that were traditionally acquired as part of the hands-on learning described above (see Sections 3.1.2 on kits and services and 3.4 on how this is enabling the development of research com- munities outside traditional institutions) is a phenomenon that may affect the role of tacit knowledge. An increasing number of online resources provide step-by-step training, such as the Journal of Visualized Experiments (JoVE), which seeks to take advantage of video technology to capture and transmit the multiple facets and intricacies of life science research. Visualization greatly fa - cilitates the understanding and efficient reproduction of both basic and complex experimental techniques, thereby addressing two of the biggest challenges faced by today’s life science research community: i) low trans- parency and poor reproducibility of biological experiments and ii) time and labor-intensive nature of learning new experimental techniques. … Research progress and the translation of findings from the bench to clinical therapies relies on the rapid transfer of knowledge both within the research community and the general public. Written word and static picture-based traditional print journals are no longer sufficient to accu - rately transmit the intricacies of modern research. (JoVE website, http:// www.jove.com/About.php?sectionid=-1) This trend has led to discussions of the “de-skilling” of biology research (Mukunda et al., 2009; Schmidt, 2008; Tucker, 2011a). By permit- ting less skilled individuals to carry out more procedures, such materials and resources could reduce the importance of some forms of tacit knowl- edge and hence its role in limiting misuse. But there are also questions about the level of sophistication that could actually be achieved by prac - titioners without the deeper biological or mechanistic understanding that enables experienced researchers to respond to difficulties in the course of an experiment or effort to develop a weapons capability.3 The committee does not have an answer to the implications of the changes in the roadblocks provided by tacit knowledge to the potential misuses of life sciences research. The discussion is intended to highlight an area that could be the subject of future study and consideration as part of broader efforts to monitor S&T trends. It also notes the important role 3 For an example of the possible difficulties, see the report from the Center for a New American Security on the efforts by Aum Shimrikyo to acquire both biological and chemical weapons capabilities (Danzig et al., 2011).

OCR for page 93
101 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY that understanding how to propagate norms about responsible conduct of science would play in the development of any response. 5.1.2.2 Overcoming Roadblocks: Serendipitous Discoveries and Those Enabled by Simultaneous Progress in Multiple Fields Serendipity Advances in technology that enable a deeper understanding of the processes and links between molecules, cells, organisms, and ecosys - tems have resulted in more detailed and thorough models of biological response and behavior than ever available before. However, these new technologies have also revealed a greater complexity within biological systems than previously known, and this complexity presents significant challenges to those modeling efforts. As a result, although our theoretical understanding has improved, the capacity to predict, ab initio, organ- ism responses to changes in the molecular and biochemical structures within its cells remains largely out of reach. Biology remains at its core an empirical science and serendipitous discovery is still relatively common. A frequently cited example from an area of science with dual use potential is RNA interference (RNAi), whose initial discovery grew out of efforts by plant researchers to find ways to give petunias a deeper purple color (Chamberlin and Kwik Gronvall, 2007; Gilbert, 2010). More and more researchers are crossing disciplinary and geographic boundaries and identifying new ways to tackle biological questions. It is probable that major advances in understanding and fine control of bio- logical systems will be rapid relative to the past 5-10 years but one can expect that a number of them will come as surprises. Parallel Tracks Major leaps in scientific understanding and the emergence of new fields of research often occur because multiple, parallel technologies have advanced concurrently to a stage where they can be drawn upon to cre - ate something new. For example, early efforts in synthetic biology drew upon x-ray crystallography; DNA sequencing and recombination tech- niques; the development of sensitive, small-scale analytical methods; and advances in modeling techniques and computing power. Today, there is a general sense within the life sciences community that many parallel tracks and fields of research are developing simultaneously. When advances in multiple fields reach a stage where they can be successfully combined to build upon each other, there will be the potential for the emergence of new fields of discovery and the development of new, powerful techniques for

OCR for page 93
102 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION manipulating and understanding biological systems. As just one possible example, combining the development of an aerosol delivery system able to effectively cross the blood brain barrier and deliver controlled quanti - ties of a biologically active peptide drug to specific, targeted cells; more precise physiological understanding of how regulatory molecules affect the central nervous system and how such effects can be controlled; and cost-effective and scalable production of both the peptide and the delivery vector would significantly expand options for using peptide bioregula- tors to influence human systems. The emergence of new fields and new advances building on parallel developments will likely occur most often around applications and issues that are affected by the drivers described above, i.e., those that have strong economic and public health impacts, although they may also appear in other areas. The pace of research today suggests that new developments will be swept up very quickly into the general practice of biology and related fields. 5.1.3 Discussion and Implications Certain scientific and technical roadblocks may impede future prog- ress, but when they are overcome they will enable particularly rapid development to follow. Two examples from 20th-century life sciences are presented in Box 5.1. The workshop and committee discussions highlighted several current roadblocks in the life sciences that could be subjects for future monitoring and assessments of S&T trends. These include: • Advances in mathematical and computational modeling that are able to better account for biological complexity and to render the models more accurately predictive of biological behavior. To achieve this goal, sophisticated mathematics may be required to more accurately express biological systems as equations, given that biological systems do not always behave in precisely defined ways but instead exhibit variability and ranges of responses. In addition, increased computational power may be required to simultaneously solve the very large numbers of equations needed to describe a biological system. • Developments in the understanding of immunology and the rela - tionships of the immune system with other biological systems that would allow for controlled and predictive immune system modulation. • The design and creation of more and more complex synthetic bio- logical pathways. • The development of more effective methods of targeted and con- trolled delivery, able to deliver high levels of a protein or drug

OCR for page 93
103 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY BOX 5.1 Overcoming Scientific Roadblocks: PCR and Penicillin The dramatic explosion of research and application that can follow from over- coming a scientific roadblock is demonstrated by two well-known examples from 20th-century life sciences. Polymerase Chain Reaction (PCR) Scientists knew that the primary genetic material of life was encoded in DNA but were limited in their abilities to analyze and manipulate specific genes be- cause any particular sample contained such a small quantity mixed among other genetic material. In the 1980s, Dr. Kary Mullis described a technique to amplify a specific DNA sequence multiple fold. PCR exploits key aspects of DNA replication: double-stranded pieces of DNA are separated at high temperature; short DNA primers flanking and complementary to the target DNA sequence are annealed at lower temperature; and the enzyme DNA polymerase synthesizes new DNA to copy the target sequence. These cycles of heating and cooling are repeated, doubling the amount of target DNA each time. Starting from a single DNA copy, 32 cycles of PCR will yield more than 1 million copies of the target sequence. This technique revolutionized molecular biology and paved the way for a subsequent explosion in genetic research. The ability to amplify individual DNA sequences greatly expanded the ability to detect and analyze gene mutations, to associate genetic changes with particular diseases, and to enable medical diagnosis and genetic screening. PCR is one of the fundamental techniques that underpin modern biotechnology. Penicillin In 1928, Alexander Fleming at St. Mary’s Hospital in London identified a mold from the genus Penicillium on a culture plate of Staphylococcus bacteria he had left on a lab bench. A substance released by the mold had killed the bacteria, leaving a plaque—he subsequently named this substance penicillin and tested its efficacy against various types of bacteria. Early studies on the potential disease-fighting properties of penicillin were severely hampered by difficulty isolating and produc- ing it. In the late 1930s, Ernst Chain, Howard Florey, and Norman Heatley at the University of Oxford became interested in penicillin, studying its chemistry and working in collaboration with Andrew Moyer of the U.S. Department of Agriculture’s (USDA’s) Northern Regional Research Laboratory to significantly improve the abil- ity to purify and produce it in larger quantities. The subsequent medical studies this enabled established penicillin as a “miracle drug” that dramatically improved treatment for bacterial diseases and started the age of antibiotic therapeutics. The discovery of penicillin also highlights the long-standing interdisciplinary nature of life sciences research—the combination of Fleming’s biological observations with the Oxford and USDA researchers’ chemical and production work, as well as the determination by Dorothy Hodgkin of penicillin’s molecular structure using x-ray crystallography, brought penicillin to the point that it could feasibly be tested and used clinically and helped facilitate the development of new antibiotics.

OCR for page 93
108 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION TABLE 5.1 Continued Relationship to BWC Article Selected S&T Developments IV. Each State Party to this Convention Clarifications with regard to the coverage shall, in accordance with its of advances in S&T under Article I could constitutional processes, take any require additional legislative or regulatory necessary measures to prohibit and steps by the States Parties under Article prevent the development, production, IV to embed them into national laws and stockpiling, acquisition, or retention of regulations. the agents, toxins, weapons, equipment The increased power of and access to S&T and means of delivery specified in could make it easier (subject to all the Article I of the Convention, within roadblocks discussed earlier) for terrorist the territory of such State, under and other non-state groups to develop its jurisdiction or under its control and produce biological weapons, and anywhere. thus trends in S&T are changing states’ ability to counter/prevent/respond to bioterrorism. Awareness within the S&T community of the broad set of ethical norms and legal obligations that prohibit misuse, along with engagement in relevant discussions, is valuable in supporting the treaty. V. The States Parties to this Convention S&T developments can help support States undertake to consult one another and Parties’ national efforts to implement to cooperate in solving any problems the provisions of the BWC. In particular, which may arise in relation to the developments in biosensors, plant and objective of, or in the application of animal disease surveillance systems, and the provisions of, the Convention. microbial forensics could contribute to Consultation and Cooperation pursuant monitoring and investigating potential to this article may also be undertaken instances of the development, acquisition, through appropriate international or use of a biological agent. procedures within the framework of International collaborations that the United Nations and in accordance help support other aspects of BWC with its Charter. implementation—global cooperation in scientific research, in systems for disease surveillance and identification, and in development and manufacture of vaccines and medical therapeutics—also foster transparency and contribute to the creation of conditions under which any concerns about possible risks can be discussed in a cooperative manner.

OCR for page 93
109 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY TABLE 5.1 Continued Relationship to BWC Article Selected S&T Developments VI. (1) Any State Party to this convention S&T can contribute to investigations of which finds that any other State Party is instances of alleged misuse of biological acting in breach of obligations deriving materials. Genomics and other “omics” from the provisions of the Convention fields provide information that can help may lodge a complaint with the Security characterize a potential agent. Creating Council of the United Nations. Such a international capacity in the field of complaint should include all possible microbial forensics, which is built on these evidence confirming its validity, as well areas of sciences, may also help identify as a request for its consideration by the the origins of a microbial pathogen, and Security Council. this is one area of particular relevance to (2) Each State Party to this Convention the BWC. Other detection and surveillance undertakes to cooperate in carrying out systems (e.g., biosensors, disease any investigation which the Security surveillance networks) may also help Council may initiate, in accordance provide evidence of the occurrence of an with the provisions of the Charter of event and assist in determining whether the United Nations, on the basis of the it is likely to be a natural outbreak, an complaint received by the Council. The accidental release, or an intentional act. Security Council shall inform the States Parties to the Convention of the results of the investigation. VII. E ach State Party to this S&T can contribute to the provision of C onvention undertakes to provide or assistance through the sharing of scientific support assistance, in accordance with information and capabilities in areas like the United Nations Charter, to any Party microbial forensics, disease surveillance, to the Convention which so requests, if vaccine development, improved the Security Council decides that such treatments and prophylaxis, as well as Party has been exposed to danger as a other advances that improve biodefense result of violation of the Convention. and domestic response capabilities. IX. Each State Party to this Convention The use of chemical techniques to affirms the recognized objective of synthesize biological molecules and the effective prohibition of chemical use of engineered biological systems weapons and, to this end, undertakes to to produce chemicals highlight areas continue negotiations in good faith with of convergence between chemistry a view to reaching early agreement on and biology and the value of dialogue effective measures for the prohibition between the BWC and Chemical Weapons of their development, production and Convention (CWC). S&T developments stockpiling and for their destruction, discussed during the workshop (e.g., and on appropriate measures concerning sensors, countermeasures) can also equipment and means of delivery contribute to addressing potential specifically designed for the production chemical weapons threats. or use of chemical agents for weapons purposes. continues

OCR for page 93
110 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION TABLE 5.1 Continued Relationship to BWC Article Selected S&T Developments X. (1) The States Parties to this S&T developments contribute directly to Convention undertake to facilitate, the effective use of science for peaceful and have the right to participate and beneficial purposes. Enabling in, the fullest possible exchange of technologies such as the Internet enhance equipment, materials and scientific and scientific collaboration and information technological information for the use of sharing. Cooperative efforts in areas bacteriological (biological) agents and like genome sequencing, understanding toxins for peaceful purposes. Parties human variation, vaccine development, to the Convention in a position to do and disease surveillance all support the so shall also cooperate in contributing goals expressed in Article X. individually or together with other The scientific community can also support States or international organizations national and international efforts by to the further development and fostering a culture of awareness, self- application of scientific discoveries governance, and responsible conduct and in the field of bacteriology (biology) by engaging in stakeholder discussions to for prevention of disease, or for other achieve security goals while not unduly peaceful purposes. restricting legitimate and beneficial (2) This Convention shall be implemented research. in a manner designed to avoid hamper- The growing S&T capacity in many parts ing the economic or technological of the world can also enable more States development of States Partie s to the Parties to participate actively in the Convention or international cooperation implementation of the convention. in the field of peaceful bacteriological (biological) activities, including the international exchange of bacteriological (biological) and toxins and equipment for the processing, use or production of bacteriological (biological) agents and toxins for peaceful purposes in accordance with the provisions of the Convention. a In recent years the five largest (the International Gene Synthesis Consortium (IGSC), http://www.genesynthesisconsortium.org/Home.html) and a number of smaller gene syn- thesis companies (the International Association Synthetic Biology (IASB), http://www. ia-sb.eu/go/synthetic-biology/) have created consortia to promote adherence to different voluntary protocols to screen orders (IGSC’s emphasis) and vet customers (IASB’s) to check that transactions are legitimate. An account of this and other approaches to self-governance may be found in Smithson (2010). SOURCE: United Nations (2011) for text of the BWC Articles. 5.3.1 Promoting Norms of Responsible Conduct within the Scientific Community The BWC is a formal international legal agreement, but it is also an expression of an international norm. As Ambassador Masood Khan, the chair of the BWC’s Sixth Review Conference, told the United Nations:

OCR for page 93
111 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY The BWC has had marked success in defining a clear and unambiguous global norm, completely prohibiting the acquisition and use of biologi- cal and toxin weapons under any circumstances. The preamble to the Convention so forcefully states: the use of disease as a weapon would be “repugnant to the conscience of mankind.” It captures the solemn undertaking of the states parties “never in any circumstances to develop, produce, stockpile or otherwise acquire or retain” such weapons. With 155 states parties, the treaty is not universal, but no country dares argue that biological weapons can ever have a legitimate role in national de - fense. Such is the force of the treaty.” (Khan, 2006) Thus, in addition to any obligations that may fall on scientists through the legal requirements of national laws to implement the Convention, the BWC also suggests responsibilities on the part of the scientific community to help mitigate the risks that their discoveries could be misused. Two of the intersessional meetings—2005 and 2008—dealt with topics that reflect on promoting awareness and a sense of responsibility among scientists.6 Both meetings also served as major vehicles for engaging the scientific community; a number of international scientific organizations held events to prepare for and took part in the intersessional meetings themselves (NRC, 2009a, 2011a). This engagement helps encourage scientists to take part in other activities that assist with the BWC’s implementation, such as helping States Parties understand current developments in science. Efforts to engage the scientific community by emphasizing responsibili- ties in addition to legal requirements may also benefit from larger discus - sions currently taking place in various international settings about science ethics, the social responsibility of science, and specific issues related to research integrity.7 5.3.2 Monitoring and Assessing Scientific Developments The preparations for the Seventh Review Conference have highlighted the potential for adopting a more systematic process to monitoring and assessing developments in S&T (see, for example, China, Canada, and BWC ISU [2010] and Indonesia, Norway, and BWC ISU [2011]). A project 6 The topic in 2005 was “content, promulgation, and adoption of codes of conduct for scientists,” and the topic in 2008 was “oversight, education, awareness raising, and adoption and/or development of codes of conduct with the aim of preventing misuse in the context of advances in bioscience and biotechnology research with the potential of use for purposes prohibited by the convention” (Bansak, 2011). 7 Two examples of efforts that include some consideration of security issues are the 2nd World Congress on Research Integrity (http://www.wcri2010.org/index.asp) and the 2010 Draft Report on Science Ethics from the UNESCO World Commission on the Ethics of Scientific Knowledge and Technology (http://unesdoc.unesco.org/images/0018/001884/188498e. pdf).

OCR for page 93
112 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION of the Harvard Sussex Program on Chemical and Biological Weapons, “Examining the role of Science and Technology reviews in the Biological Weapons Convention,” is currently assembling an extensive list of options for taking account of S&T in the BWC’s future program.8 A detailed explanation and analysis of these options is expected to be available in the autumn of 2011 (McLeish and Revill, 2011). The committee has not attempted to duplicate the list of possible options here, but offers some general thoughts on processes that might be employed. 5.3.2.1 Employing a Formal Scientific Advisory Mechanism As biology and chemistry increasingly interact across life sciences research, some BWC States Parties have suggested that the experiences of the CWC provide useful lessons for how the BWC could address S&T trends (China, Canada, and BWC ISU, 2010; Indonesia, Norway, and BWC ISU, 2011). The CWC includes a formal Scientific Advisory Board (SAB) appointed by the Director General of the Organization for the Preven- tion of Chemical Weapons (OPCW), with mechanisms for appointments, member rotation, geographical balance, and formal tasking. Substantive work within the CWC SAB is carried out at its regular meetings and also through Temporary Working Groups with formal reporting processes. Much of the SAB’s work is in developing improved verification proce- dures and providing S&T advice and guidance related to treaty imple- mentation. However, such a SAB mechanism also needs institutional support (i.e., by the CWC Technical Secretariat) and has the potential to become politicized. The SAB was never intended to be the only source for reviews of S&T developments, and OPCW has found it valuable to receive input on developments in S&T from the wider scientific commu - nity. The relationship of OPCW with the International Union of Pure and Applied Chemistry described in Chapter 1, which has twice convened workshops on relevant developments in the chemical sciences and tech - nology, reflects this broader engagement. 5.3.2.2 Making Use of Flexible Mechanisms to Address S&T The current approach for BWC review conferences is to rely on contri- butions from States Parties and from experts within the relevant scientific and technical communities in a more ad hoc fashion. This approach is more flexible than appointing a formal advisory board and might more easily draw on the specific experts needed to review individual areas of 8 Further information about the project is available at http://hsp.sussex.ac.uk/ sandtreviews/.

OCR for page 93
113 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY science or to answer particular scientific questions posed by the States Parties to the BWC. Another option under consideration for a future intersessional process is to create working groups or experts meetings that could be established as semi-formal arrangements between the BWC and external organizations, such as the IAP and scientific unions. The work - shops in 2006 and 2010 have demonstrated the interest of these groups in the BWC and their willingness to contribute. Such groups offer potential advantages because they: • Bring a reputation for scientific quality and independence to the discussions and provide “champions” who can act at the interface between S&T and policy communities. • Provide access to scientists working at the cutting edge, as well as to educators, science historians, and publishers, all of whom can contribute to understanding developments. • Provide access to scientific meetings, symposia, and journals as windows on the research community and also some access to industry. The groups are also currently limited by budgetary constraints, mini - mal support staff, and organizational agendas and priorities that do not necessarily include the BWC. All four of the workshops described in Chapter 1 experienced difficulty in finding funding and staff support in time to complete their contributions to the review conference process. A somewhat more regular process for engaging the scientific community would require the provision of resources but could help ensure useful and timely contributions. 5.3.2.3 Advising Activities Whatever sort of mechanism is selected would depend on how the States Parties define their objectives for reviewing S&T areas and the desired outcomes of the process. These decisions will impact both the types of activities that are undertaken and the timing of activities in order to most effectively meet the objectives: • Broad Reviews of S&T Trends At present, assessments of S&T relevant to the BWC are under- taken every five years as part of the regular review conference process. The workshops held in 2006 and 2010 reflect independent contributions from the scientific community to this process; indi- vidual States Parties and the BWC Implementation Support Unit also submit contributions on S&T. These types of workshops and contributions can provide a very broad-based overview of the state

OCR for page 93
114 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION of life sciences but are not able to delve into great detail in any one area. It has been suggested that more frequent assessments are needed, but whether they are comprehensive or focus on one or more topics of particular interest will have to be discussed and debated. • Focused Assessments of Specific Areas of S&T States Parties may be interested in specific areas of S&T, such as synthetic biology or microbial forensics. Activities that bring together experts in more specific fields could address develop - ments, needs, opportunities, and implications in greater detail, or could help inform States Parties based on specific questions. New topics could be chosen yearly or on some other timeframe. Activities could include workshops, papers, and briefings of expert scientists with government technical experts or with States Parties, or other options. Another question for States Parties to consider is how they wish to be informed about relevant S&T. As the 2006 and 2010 workshops demon- strated, scientists sometimes disagree about the state of a particular line of research, how feasible certain tasks or developments may be to accom - plish, and certainly about what the potential implications of advances might be for the BWC or security more generally.9 A broad consensus may mask considerable complexity in scientific interactions. This complexity and disagreement is essential for understanding the pace and prospects for S&T developments. For policy makers, however, the messages on S&T implications may need to be presented in less complicated or more easily digestible form. This suggests an important role for government techni - cal experts in bridging the gap between scientists from academia and industry and diplomats. The four workshops for the CWC and BWC on S&T have included technical experts for this reason and for the assistance they provide to researchers in understanding the potential implications of their work. 5.4 SUMMING UP: THE COMMITTEE’S FINDINGS AND CONCLUSIONS Discussions of a wide range of scientific and technological develop - ments, along with their implications, are found throughout the report. This section brings together the threads of these discussions to present the committee’s overall findings and conclusions. Because of the diversity of 9 An example is the debate over the past decade about the risks posed by the publication of various research results. Some early examples of “contentious research” (Epstein, 2001) are discussed in a report from the National Research Council (2004).

OCR for page 93
115 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY research in the life sciences, the report does not cover all areas of S&T in depth. Rather, the report seeks to provide an overview of developments that the committee believes are potentially relevant to the future of the BWC, identify areas that suggest useful opportunities for further explo - ration and analysis, and discuss options for continued monitoring and assessing. The report is organized around three trends commonly noted in discussions of S&T: the rapid pace of life sciences developments, the increasing diffusion of research capacity, and the integration of additional disciplines beyond biology in current life sciences research. Pace of S&T Developments As was clear from the workshop presentations and discussions, life sciences research continues to advance rapidly and is expected to do so for the foreseeable future. Research in areas such as omics, systems biol- ogy, immunology, neuroscience, and many other fields is improving the understanding of complex biological processes. At the same time, the power and availability of many of the enabling technologies that support life sciences research continue to grow. Diffusion of Research Capacity The workshop highlighted global research capacity and the growing number of international collaborations in S&T. Examples in areas such as disease surveillance and microbial forensics provide clear illustrations of how international collaboration can support the BWC’s goals. The engagement of students in hands-on research through efforts like the International Genetically Engineered Machine competition (iGEM) and the expanding interest in do-it-yourself biology represent yet other forms of this diffusion. The report considers several factors that may enhance or impede developments in relevant areas of S&T and the continuing spread of research capacity, while noting the value of efforts to continue assessing and understanding the implications of these for the BWC. Integration of Life Sciences with Other Disciplines Life sciences research draws on the expertise not only of biologists but increasingly also on scientists from multiple disciplines in the physi - cal sciences, engineering, and computational sciences. As a result, efforts to monitor and assess S&T developments draw on a growing range of expertise. The scientific community may have roles to play as part of this process, for example by exploring and clarifying scientific issues in areas of overlap between chemistry and biology that might have potential implications for the BWC and CWC.

OCR for page 93
116 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION The committee reached the following nine findings: Finding I: The committee did not identify any discoveries that fundamentally altered the nature of life sciences research since 2006. However, advances in S&T on many fronts have increased our overall understanding and exploitation of biological systems, despite their daunting complexity. Finding II: There has been particularly rapid progress in the power of, and access to, enabling technologies, especially those depending upon increased computing power. These include high throughput labo- ratory technologies and computational and communication resources. This has the following consequences: • Collaborations between individual investigators, global net- works of researchers, and the formation of “virtual laboratories” are growing trends in the life sciences. • Increasing access to sophisticated reagents such as standardized DNA “parts” and easy-to-use commercial kits and services has placed some hitherto advanced technologies within the reach of less highly trained practitioners, and has expanded the global spread of life sciences research and its industrial applications. • Although first class research continues to rely heavily upon tacit knowledge, the availability of web-based technologies is facilitat- ing the transfer of tacit knowledge through the creation of world- wide formal or informal learning communities or partnerships. • These technologies reduce the barriers to the spread of S&T knowledge for responsible, educational purposes, thus creating more favorable conditions for international cooperation in the peaceful application of the life sciences. • At the same time, we must recognize that these same barriers also serve as impediments to misuse. This is an area that would benefit from more in-depth analysis to gain a more nuanced understanding of the developments and trends and their impact on the norm against biological weapons. Finding III: Multiple disciplines, including the life, chemical, phys- ical, mathematical, computational, and engineering sciences, are con- verging. This trend will continue and is relevant to the BWC as well as the CWC. The impact of this convergence on the existing arms control system must be better understood in order to draw conclusions about whether adaptations in the application of the existing regimes may be required, and if so, what they should be.

OCR for page 93
117 MONITORING AND ASSESSING TRENDS IN SCIENCE AND TECHNOLOGY Finding IV: The field of bioreactor research and the use of trans - genic organisms to produce commercially or medically important pro - teins have seen impressive advances. These have reduced the time needed to produce proteins and have the potential to affect the scale of the facilities required. This has obvious implications for the BWC, for example with regard to the measures States Parties need to take to implement the BWC and to prevent the use of biological or toxin agents for hostile purposes. Finding V: The development of microbial forensics illustrates one way that life sciences research from around the world can support the BWC and create better tools to investigate and discriminate between natural and deliberate disease outbreaks. Finding VI: Notable technical advances have been made at the level of individual-use biosensor detector systems, although there are limi - tations to what can be achieved given that sensor development must balance factors such as specificity, sensitivity, range of target molecules analyzed, and type of use. Finding VII: The combination of approaches including improved biosensors, epidemiological monitoring, vaccine research, forensics, and other laboratory investigations can contribute to effective disease detection, investigation, and response systems worldwide. Finding VIII: These advances underscore the potential for more States Parties to contribute to the implementation of the BWC, for example by expanding their global public health and disease surveil - lance capabilities, or by playing leadership roles in capacity building in their regions. Finding IX: Certain scientific and technical roadblocks (e.g., drug delivery technologies) impede future progress, but once overcome, would presage a phase of rapid development. The international scien - tific community can play a useful role in tracking trends and develop- ments in S&T. Its continued engagement with the BWC is essential to identifying these key scientific hurdles and when they have been overcome. Many of the committee’s findings about developments in S&T will not surprise those who follow trends in research that are potentially rel - evant to the BWC. Taken together, they represent the S&T reality in which the convention is now operating and the challenges and opportunities

OCR for page 93
118 TRENDS RELEVANT TO THE BIOLOGICAL WEAPONS CONVENTION this reality poses for the Seventh Review Conference. They also lead the committee to four general conclusions Conclusion 1: None of the trends surveyed for this report currently falls outside the scope of Article I. The language of the treaty, as rein - forced by the common understandings reached in prior review confer- ences, provides a degree of flexibility that has so far allowed it to adapt to progress in the life sciences and related scientific fields. The com - mittee recognizes, however, that as new developments arise, including in fields of research that this report did not assess in depth, there may be surprise discoveries; hence, continued monitoring of advances in the life sciences and evaluation of their relevance for the BWC will be important. Conclusion 2: Beyond the question of whether these trends pose fundamental challenges to the scope of the treaty, every major arti- cle of the treaty will be affected by the developments surveyed. The trends may pose challenges to the implementation of some aspects, but they also offer important opportunities to support the operation of the convention. Conclusion 3: The three broad trends that provided the organiza - tion of the report—the increasing pace, diffusion, and convergence of S&T—will continue for the foreseeable future. The diversity of the fields potentially relevant to the BWC and the potential for surprise discoveries make efforts to predict developments problematic. Within these trends, however, particular fields will be affected in important ways by factors such as commercial interests that drive developments at different rates, as well as roadblocks that impede progress. Gaining a deeper understanding of the drivers and roadblocks would provide a more meaningful picture of how and when continuing S&T develop - ments are likely to affect the convention. Conclusion 4: There are potential roles for the scientific community in helping to monitor trends in S&T and to assess their implications for the BWC, and there are a number of mechanisms by which input and advice could be provided. The most effective starting point for the Seventh Review Conference, therefore, would be to address the func - tions that such advice and analysis will serve for the future operation of the convention, including increasing the capacity of States Parties to participate fully in its implementation.