Click for next page ( 120


The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 119
V. ANIMAL DERIVATIVES

OCR for page 119

OCR for page 119
17 Using Mixed Starter Cultures for Thai Nham Pairote Wiriyacharee Nham is traditionally made from fresh lean pork that is trimmed; minced; mixed thoroughly with salt, potassium nitrate, cooked rice and seasonings; and packed in either banana leaves (1) or cylindrical plastic bags (21. Nham production in Thailand depends on chance contamination with wild organisms lactic acid bacteria and nitrate- reducing bacteria. It is a long process; generally the fermentation lasts 3 to 5 days depending on the season. When nham is packed into cylindrical plastic bags, which exclude air, and is held in the bags during fermentation, a microenvironment is selected for microorganisms that are not only salt tolerant but can also grow in the absence of air. In these gram-positive fermentative types of microorganisms, lactic acid bacteria are predominant (3,4~. The fermentable carbohydrates are used by those organisms to produce organic acids, mainly lactic acid, that contribute to a variety of flavors and textures. The nham finally develops approximately 1.0 percent total acidity as lactic acid and the pH is 4.3 (51. MARKETING PROBLEMS Problems in marketing traditional nham include its short shelf life and high price and the intensive labor required for its production. It has high energy costs if kept under refrigeration in the marketplace. Additionally, the manufacturers have a heavy exposure to risk of losing a large stock through a process failure. Pork meat is quite expensive, and the raw material cost is increasing more quickly than the selling price..In addition, large-scale production of sham has the problem of its short storage life. A longer shelf life is required so that the nham can be distributed to the marketplace. Therefore, the nham market 121

OCR for page 119
122 FERMENTED FOODS needs the product to have consistent quality, safety, and longer shelf life. The nham should stay fresh and not turn rancid or develop an off- flavor or change in color when it is in the marketplace. On the other hand, nham production depends on natural fermenta- tion; the product quality therefore varies from batch to batch. The shelf life of nham is quite short approximately a week at Thai ambient temperatures. Chilled conditions can extend the shelf life, but normally the product is stored at ambient temperatures. The sanitation conditions of the processing are also poor because of a lack of knowledge and technology. The initial native lactic acid bacteria may be insufficient to bring about the normal ripening process. This may allow pathogenic bacteria to grow before lactic acid bacteria occur, resulting in the possibility of food poisoning. Since most nham is consumed without further cooking, proper fermentation is of paramount importance in ensuring the products safety. Somathiti (6) found that the initial coliform count was high in nham approximately 107 cells per gramand decreased to 102 cells per gram on the fifth day. An investigation of Salmonella in nham in the Bangkok market showed that it was present in 56 (or 12 percent) of 450 samples. In nham produced in Chiang Mai, Chiang Rai, and Ubonratchathani, Salmonella was found in 25 percent, 42 percent, and 11 percent, respectively, of the total samples. However, Shigella sp. was not found in nham bought from any of these markets. Thus, the nham process needs to be studied to improve product quality, to give a more uniform standard quality, and to develop the technology for applying of the process on an industrial scale- before launching extensively in the Thai and export markets. NHAM DEVELOPMENT In developing of an improved nham process, not only is there a need for the knowledge of modern scientific discoveries and technological developments but also the knowledge of consumers' needs and wishes. The final product must be acceptable to consumers. A unified system is required that combines scientific and consumer information for systematic development of the nham product. Effect of Starter Cultures In our research mixed starter cultures and the carbon sources used in nham formulation were important factors in determining product quality (71. The starter cultures had a potential to make a good nham quality. Cooked rice, a carbon source for lactic acid production by starter cultures, was an important factor in nham fermentation.

OCR for page 119
USING MIXED STARTER CULTURES 123 The addition of L. plantarum to the nham mass accelerated very distinctly the decrease in the pH of nham. Consequently, the firmness and color developed, influenced directly by acid production. Those findings were in agreement with the work of many researchers (8-124. P. cerevisiae increased the firmness later during the last period of fermentation. The optimum growth of P. cerevisiae is at pH 5.0 (13), the conditions during this period allow good growth and acid production causing the increase in firmness. L. plantarum inoculation had a very distinct effect in terms of firmness development when it was used together with P. cerevisiae. M. varians in the nham system significantly reduced nitrate to nitrite during the initial fermentation and increased the tristimulus values at the beginning of fermentation. L. plantarum then continued to intensify the color. This finding agreed with the work of Deibel et al. (141; they reported that nitrate-reducing activity generally occurred during the first 2 to 16 hours, while acid production was initiated after 8 to 16 hours. It was clear that it was important to ensure the nitrate- reducing activity of the M. varians that took place prior to its inhibition by the growth of lactic acid bacteria. The nitrite formed was decomposed spontaneously in acid surroundings into nitric oxide, which subsequently reacted with myoglobin to form a pink compound- nitrosomyoglobin. So the residual nitrate in the nham system reduced quickly when acid was produced. The rate of nitrosomyoglobin forma- tion increased with falling pH, and this reaction takes place best in the pH range of 5.0 to 5.5 (15) and was therefore accelerated by L. plantarum. The L. plantarum inoculation had a very distinct effect in terms of color development when it was used together with M. varians. On the other hand, L. brevis seemed to be a poor lactic acid producer and decreased the color of the product and also produced gas, which decreased the firmness of the nham. Microbiological Quality The starter cultures L. plantarum and P. cerevisiae increased during the initial fermentation and were highest on the third day of fermentation with 1-06 to 109 cfu/g-' (colony forming units) and then decreased slowly during the later period of fermentation. In the nham sample, on the other hand, the M. varians decreased during the fermentation approximately 2 log cycles by the third day. The total bacterial count was related to the starter cultures counts, but there was a little higher count of approximately 1 log cycle. No yeasts or molds were detected in the finished nham. The pathogenic bacteria, including Enterobacteriaceae and Staphylo- coccus aureus, decreased during fermentation. In the nham fermented

OCR for page 119
124 FERMENTED FOODS for 3 days the Enterobacteriaceae and S. aureus counts were 102 and 103 cfu/g-', respectively. FERMENTATION DEVELOPMENT In Thailand large amounts of cooked rice are added to the raw nham mixture. It is degraded only slowly and may result in growth of undesirable organisms during fermentation, particularly at high ripening temperatures. Glucose is therefore added to the cooked rice. This ensures a sufficiently rapid initial growth and nitrate reduction by M. varians and rapid later pH drop, without inhibiting the chemical reactions necessary for the development of firmness and desired color. Cooked rice and glucose had no effect on pH reduction during nham fermentation. As the fermentation time increased, the pH decreased. The pH dropped rapidly after 18 hours of fermentation at 30C, 43 percent relative humidity with pH 5.1. The beginning of cooked rice reduction coincided with the increase in reducing sugars after 12 hours of fermentation. The reducing sugars declined after another 12 hours of fermentation, and this coincided with the decrease in pH. This indicated that if both cooked rice and glucose were used at high levels (10 percent and 1 percent, respectively) at the beginning of the fermentation, the pH dropped more slowly than if lower levels were used (8 percent cooked rice and 0.5 percent glucose). Increasing the amount of cooked rice, on the other hand, reduced the firmness of the nham. There was an increase in weight loss at the high level of glucose. There were 1.0 to 1.3 percent reducing sugars and 2 to 3 percent cooked rice in the finished nham, and this residual carbohydrate could be used by the undesirable organisms during storage. Therefore, the carbon source levels in nham should be reduced. When the glucose level was maintained at 0.5 percent but the level of cooked rice increased, a longer period was required to attain adequate fermentation end products (16~. It was also found that 6 percent cooked rice with 0.5 percent glucose in the nham formulation, when fermented with starter cultures at 30C and 97 percent relative humidity, caused rapid pH reduction. Acid production was good, firmness and color development were satisfac- tory, and the product was microbiologically safe. The rate of fermentation and the ultimate pH of nham are directly influenced not only by the specific formulation but also by the processing conditions. Since the safety and quality of nham depend on the rate and extent of acid production, a thorough understanding of these environmental parameters is essential for total control of the product. In our research, higher temperatures increased the rate of

OCR for page 119
USING MIXED STARTER CULTURES 125 fermentation, reduced pH, and improved firmness and color develop- ment. The initial temperature of nham was very important in deter- mining the final product. The achievement of lowering pH was affected by the initial product temperature and the time at that temperature. For experimentation with frozen meat, the temperature of nham mixtures was 15C; with fresh meat the temperature was 26C. The pH dropped more quickly in nham made with fresh meat than with frozen meat. Nham made using frozen meat was fermented at 30C and 97 percent relative humidity. It took 3 days to reduce the pH to 4.3 to 4.4, while the nham using fresh meat fermented under the same conditions needed only 2 days to reduce the pH to 4.1. Nham is usually held at a high temperature during processing to ensure rapid fermentation, but this can also accentuate the growth of pathogens. In addition, nham is usually eaten without further cooking by the consumer. These conditions make strict control of the product essential. Although proper sanitation, employee hygiene, and the control of raw materials definitely reduce contamination, ultimate control of product safety must be inherent in the formulation and process. The addition of starter cultures can provide sufficient microbial numbers to ensure numerical dominance over the natural flora, including pathogens, and in combination with the proper proc- essing controls can guarantee the safety and quality of the final nham. Shelf Storage Nham is usually sold in Thai markets at ambient temperatures (20 to 30C). It was found that nham prepared using the improved conditions described here when stored at these temperatures had a shelf life of 9 to 11 days while commercial nham usually has a shelf life of only 3 days. In supermarkets nham is stored at chilled temperatures (5C), and it can be exported at low temperatures (1C). Additionally, consumers usually store the product in a household refrigerator (10C). It was found that shelf life was extended to 63 to 103 days at storage temperatures of 1 to 10C. The higher the storage temperature, the greater the change in nham quality. Sensory Evaluation Nham fermented with 103 cfu/g M. varians, 103 cfu/g L. plantarum, and 106 cfu/g P. cerevisiae with 6 percent cooked rice and 0.5 percent glucose at 30C, 97 percent relative humidity for 3 days, was accepted by the trained panel, with an overall acceptability mean ideal ratio

OCR for page 119
126 FERMENTED FOODS score of 0.95+0.01. For quality degradation during storage, the overall acceptability of the product depended on sourness and off-flavor detected in the sample. Nham using fresh meat fermented at a low temperature was given a higher than ideal score for sourness. However, the newly developed formulation for nham was superior to that of the commercial nham. The consumer panel was also used to determine the effect of reducing the fermentation time from 3 days to 2 days. The results showed that only visual texture was significantly different from the ideal product. In consumer testing the majority of the consumers (90 percent) accepted the developed nham in terms of sourness, spiciness, and saltiness. In conclusion, the development of traditional fermented pork sau- sage, nham, was very successful in that the product was developed by using mixed starter cultures and had a very high quality in terms of consistency, microbiological safety, and longer shelf life. It was also acceptable by the target consumers. The product could be processed in a simple plant and with equipment that was available at the fermented meat factory with only an improvement in the technology of culture preparation and temperature control. In addition, the developed nham had a longer shelf life than commercial nham. The product, therefore, could be shipped from the cottage industry producers in the north to all provinces in Thailand, particularly to Bangkok, and also gave the potential for overseas shipment if refrigeration is used. REFERENCES 1. Adams, M. R. 1986. Progress in Industrial Microbiology. Vol. 23. Microorganisms in the Production of Food. New York: Elsevier Science Publishers. 2. Pakrachpan, L. 1981. Fermented Food Industry. (In Thai). Biotechnology Department, Faculty of Agro-Industry, Kasetsart Uni- versity, Thailand. 3. Comenuanta, J. 1966. Thai Fermented Pork. I. Microbiology of the Thai Fermented Pork. B.Sc. thesis, Kasetsart University, Thailand. 4. Techapinyawat, S. 1975. Microbial Study During Fermentation of Thai Fermented Pork. M.Sc. thesis, Kasetsart University, Thailand. 5. Wiriyacharee, P. 1990. The Systematic Development of a Con- trolled Fermentation Process Using Mixed Bacterial Starter Cultures

OCR for page 119
USING MIXED STARTER CULTURES 127 for Nham, a Thai Semi-dry Sausage. Ph.D. thesis, Massey University, New Zealand. 6. Somathiti, S. 1982. A Survey of Some Enteropathogenic Bacteria in Thai Fermented Pork. M.Sc. thesis, Kasetsart University, Thailand. 7. Wiriyacharee, P., M. D. Earle, D. J. Brooks, G. Page, and L. Rujanakraikarn. 1991. Identifying the important factors affecting the characteristics of nham. Food 21 ~ 1 ~ :48-58. 8. Klemet, J. T., R. G. Cassens, and O. R. Fennema. 1973. The association of protein solubility with physical properties in a fermented sausage. Journal of Food Science 38:1128-1131. 9. Klemet, J. T., R. G. Cassens, and O. R. Fennema. 1974. The effect of bacterial fermentation on protein solubility in a sausage model system. Journal of Food Science 39:833-835. 10. Klettner, P. G., and W. Rodel. 1978. Testing and controlling parameters important to dry sausage ripening. Fleischwirtschaft 58:57- 60, 63-64, 66. 11. Klettner, P. G., and P. A. Baumgartner. 1980. The technology of raw dry sausage manufacture. Food Technology Australia 32:380- 384. 12. Palumbo, S. A., L. L. Zaika, J. C. Kissinger, and J. L. Smith. 1976. Microbiology and technology of the pepperoni process. Journal of Food Science 41: 12-17. 13. Buchanan, R. E., and N. E. Gibson. 1974. Bergey's Manual of Determinative Bacteriology. Baltimore, Md.: Williams and Wilkins Co. 14. Deibel, R. H., C. F. Niven, and D. D. Wilson. 1961. Microbiology of meat curing. III. Some microbiological and related technological aspects in the manufacture of fermented sausages. Applied Microbiol- ogy 9:156-165. 15. Niinivaara, F. P. 1955. The influence of pure bacterial cultures on aging and changes of the red color of dry sausage. Thesis, University of Helsinki, Finland, Acta Agralia Finnica No. 84. 16. Pezacki, W. 1974. Technological control of dry sausage ripening. VIII. Effect of pre-drying on the dynamics of carbohydrate changes taking place at the beginning of ripening. Fleischwirtschaft 58: 124- 126, 129-132, 135.

OCR for page 119
18 Starter Cultures in Traditional Fermented Meats Margy Woodburn Fermentation traditionally offers an easy and low-energy preserva- tion method for meats that results in distinctive products that have an important part in the diet of people making them. Such fermented meats contribute both nutritional value and pleasure to meals. How- ever, products are not the same from time to time. Indeed, the product may spoil, cause illness due to pathogenic microorganisms or their toxins, and even become lethal due to botulinum toxin production if the normal beneficial microbial flora do not multiply as usual. To prevent these problems, the use of starter cultures has become commonplace in many countries, including developing countries. One example of such fermented meat is nham, a traditional Thai sausage. Nham is made by mixing salt (3 percent by weight) and garlic with ground lean pork. Nitrate and nitrite salts also are added in commercial production. The mixture is then wrapped in a banana leaf or stuffed in cellulose tubing. Fermentation is at ambient temperature (about 30C in Thailand) for 3 to 4 days, after which it remains in good condition for only 1 to 2 days without refrigeration. Since nham is frequently eaten raw, it is important that pathogenic bacteria be killed as well as that botulinum toxin and staphylococcal enterotoxins are not produced. Since hogs are frequently infested with Trichinella spiralis, these larvae should not be viable. A study was conducted on nham made with and without the addition of one of two levels of a commercially available dry starter culture preparation (Griffith Laboratories, Ltd., Thailand) (11. Portions in polyethylene film bags were inoculated, sealed, and incubated at 30C. The inoculum was S. aureus (a mixture of three enterotoxin-producing strains) and E. cold (three strains). Microbial numbers, pH, and titrable acidity were determined at intervals during the fermentation. The meat used was from two hogs that had been experimentally infected with 128

OCR for page 119
STARTER CULTURES IN TRADITIONAL FERMENTED MEATS 129 trichinae at weaning; viable trichinae were determined at 24-hour intervals. S. aureus was able to multiply (10 x ~ and remain viable only in the control inoculated samples. E. cold was not detected at 96 hours in the sausage made with the higher level of starter (1.5 percent by weight) and had decreased greatly in products made with the 0.75 percent level. The use of the higher level of starter preparation resulted in loss of infectivity of the trichinae larvae, although further research is necessary to confirm this effect. The addition of starter culture resulted in more rapid acid production and slightly lower end-point pH. It is important to keep in mind that natural fermentations are difficult to replicate in other settings. For example, the meat mixture for nham is traditionally wrapped in small banana leaf packets. The leaves contribute to the surface flora of the sausage, which no doubt changes the fermentation pattern. Flora of work surfaces and of the pork itself may be different. Drying often follows fermentation of similar meat products to provide for long-term preservation. Dendeng ailing, Indonesian seasoned beef that has only a traditional short fermentation period before drying, was found to have a lower pH and total gram-negative bacteria, staphylococci, and E. cold counts when prepared with a starter culture of Lactobacillus plantarum than in the traditional manner. Those with a starter culture dried more rapidly at 50C and had lower water activities (2~. The effectiveness of lactic acid bacteria in suppressing the multiplica- tion of undesirable microorganisms is largely attributed to the produc- tion of organic acid. However, additional factors include the production of bacteriocins and hydrogen peroxide. More general effects include competition for essential nutrients. To maximize the quality, reproducibility, and safety of the product, strains of bacteria are selected based largely on the qualities of self- stability and viability as used, rapid acid production, and desirable product qualities. As in the starter culture preparation used for nham, strains of Lactobacillus and Pedicoccus are the most common (3,44. The compatibility of strains is important, which includes resistance to or lack of production of bacteriocins. In addition to tolerance to the salt and nitrite levels of the mixture, the culture must be active in the temperature range used for the fermentation. The product must have the expected palatability characteristics. No harmful compounds may be produced. These same attributes can be more efficiently arrived at through the application of the techniques of molecular biology. The success of traditional fermentations depends on the complex interaction of the food components, the natural flora of the ingredients, and the surfaces in contact with the food, atmosphere, and ambient

OCR for page 119
20 Fish-Meat Sausage Sam Angel and Eliana Mora P. Fermentation allows the preservation of foods of vegetable or animal origin so that they can be stored and shipped at ambient temperatures and used without further preparation. Lowering the pH is the ideal way to process foods for use in less-developed regions of the world. lPro- teins, which are needed for growth and development, especially in children, are often in short supply in famine-ravished areas and poor underdeveloped countries. In many areas of the world there are fre- quently underutilized sources of muscle proteins that could provide excel- lent starting materials for preservation by fermentation or acidulation. In Germany a popular noncooked fermented sausage (rohwurst) has been produced from beef and pork for many years (if. Lactic acid produced by fermentation lowers the pH of the meat to its gel point, which causes it to firm (2~. Further drying increases firmness and reduces water activity. The low pH prevents the development of pathogenic bacteria (3,4), and lower water activity prevents microbial growth and spoilage (5~. The pH can also be lowered by using glucono-delta-lactone, which produces gluconic acid upon contact with water, or using citric or lactic acids. Encapsulated acids release acid more slowly and prevent texture breakdown. In the encapsulation process solid acid granules are coated with hydrogenated vegetable oils or diglycerides, which require heat to release the acid. Graves (6) patented a new water- soluble low-temperature release coating for citric acid. The use of acids directly saves fermentation time, and myofibrillar protein "elation can take place within hours after mixing the meat with acids. RESULTS AND DISCUSSION Rohwurst beef-pork sausage served as a model for the development of a similar product from underutilized fish, meat trim, and poultry. A sausage-type product allows the combination of muscle from various 40

OCR for page 119
FISH-MEAT SAUSAGE 141 sources. The object was to use underutilized muscle protein sources, especially fish, to produce a nutritious and acceptable dry sausage. The product was to be eaten out of hand and thus help to alleviate protein deficiency, especially in children. Underutilized or inexpensive fish, fish tissue residue from filleting operations, red meat trim, and spent layer hens were the raw materials used in Israel, the United States, and Costa Rica to produce fermented dry sausages.- Cod or haddock frames (i.e., skeletons with residual tissue) were mechanically deboned, and the flesh mince was mixed in equal proportions with either beef or pork trim or mince from mechanically deboned spent layer hens. The batters were mixed with salt, sugar, spices, nitrite, and Lactobacillus or Pediococcus starter cultures and stuffed into 20-mm collagen casings. They were fermented at 22C for up to 24 hours depending on pH development. Control sausages consisted of beef and pork only. The pH of the fish-meat sausages fell to 5.1 to 5.4, while the pH of the beef-pork controls fell to 5.0 to 5.1. Drying took 1 week, at which time the fish- meat sausages contained 17 to 30 percent moisture and the beef-pork controls 25 to 30 percent. Fat content was 17 percent in all the batters at the outset. After drying it was 21 to 30 percent for the fish-meat sausages and 29 to 30 percent for the beef-pork. The fat contents for the fish-meat sausages were significantly lower than for similar commercial sausages in Germany. Three panel sessions were held. Between 25 and 70 persons partici- pated in each session. All the sausages were found acceptable, as shown in Figure 1. A minority of the participants commented on a fishy taste, especially for the fish-chicken sausages. In a 3-year cooperative project (7) the flesh of pond-raised silver carp and sea fish in Israel and Costa Rica was deboned and washed. It was then used to prepare fermented or acidulated dry sausages with pork or beef trim or whole-muscle turkey bottom meat. All-fish sausages and 25 to 50 percent fish-meat sausages were prepared. Fermentation was induced with Pediococcus plus Lactobacillus starter cultures. Acidulation was carried out by adding encapsulated low- temperature-release citric or higher-temperature-release lactic acids. The pH usually fell to 4.85, except for the fish-turkey sausages where the pH did not fall below 5.0. Starting and final pHs were similar for the fermented and the acidulated sausages, but the pHs for the acidulated sausages fell to their final level within a few hours as compared to several times that for the fermented sausages. Thus, the acidulated blend had a head start on drying. The entire process of pH reduction, firmness development, and subsequent drying was shortened considerably for the acidulated fish-meat sausages.

OCR for page 119
142 an an: an an: an at U] 1 1 ' I ' I ' O Go tD ~ Cal O ~J0S l0Ued 96e]0A~ 5~ o C) o o of Ct it> ? . C) Ct U. _. 0 -O C) C) Cat . Vat 3 C~ O ~ tV - 0 D . Cal ~ C I_ U. ~ ~ 3 con t ~ ~ ~ Cal ,~ ~ ~ V O i= ~ u, ? c.O ~ ~ Do 04 ~ O ~ ~ Car cat ,, ~ ~ in no 3 O . ~ ~ O D ~ o C~ ~ ^ ~V - Ct . _ ~ ~ ~ C ~ Y ~: C~ o~ Ct C~ V,

OCR for page 119
FISH-MEAT SAUSAGE 143 Citric acid was found to reduce the pH at lower concentrations than lactic acid, but in 50 percent fish-meat sausages with 0.65 percent citric acid, which was the maximum concentration used, the pH could not be lowered sufficiently. Lactic acid could be used at higher concentrations to lower the pH when necessary. A pH of 4.80 to 4.85 helped the drying process, and lactic acid was of greater benefit in this respect than citric acid. The experimental sausages were evaluated on a kibbutz in Israel and in 110 households in Costa Rica. The results of the evaluations in both countries were encouraging. In Israel the scores were 5 to 5.6 out of a maximum of 9 for the 50 percent fish sausage. Over 80 percent of the tasters in Costa Rica gave positive responses to the sausages that contained fish (Figure 24. The highest social class was least enthusiastic about the sausages. In Costa Rica the population is not accustomed to eating nonheated sausages. The evaluators therefore either cooked or fried them before eating. The organoleptic tests are consequently being repeated with new instructions. RECOMMENDATIONS To minimize production costs, these sausages should contain a minimum of 50 percent fish (from frames or other underutilized sources such as by-catch and trash fish). Acidulation produced sausage with a good texture, and it can be recommended as a procedure to reduce processing time. To improve acceptability and nutritional value as well as reduce costs and ensure quality, more research needs to be done on: flavor formulation and colorants to meet local population prefer- ences; reduction of fat content and introduction of new sources of fat; inclusion of soy or other vegetable proteins; chemistry and histochemistry of the acidulation and drying pro- cesses to improve the efficiency of these steps; the effect of replacing nitrite on the wholesomeness of the product Laccording to Leistner (8), spores of bacilli and clostridia do not grow when there is a sufficiently low pH and low water activity]; and protein efficiency feeding for young children and adolescents. These products should undergo taste tests for acceptability in other Latin American countries as well as other areas with low protein intake.

OCR for page 119
144 in in s cn ._ - ~n ~n - .et ~~ ~ o ~n m ~n o Q ~n o C' Q Q ' _ _ ._ ._ a) ~n ~ ._ O O _ _ I I I , I I I , r- I O O O O O O O splogasnoH ~ownsuo~ ~o asuodse~ a^!~e6aN pue a^!~!Sd I lU90J3d ~ ct ._ ~ ~ ._ ._ ~ O c O c; .= c'7 O c~ ~ ~ O 3 ~ ~ V: _ . ~ ,,., oc Ct C~ o C~ . o o s~ ~V ;, o o ~L, s~ U: C ~ Ct o~ C~ ~ o s~ ~ C~ V 1 - ~ - ~ ~ o - c~ ~ ~ o ct - ~ o v) o - u) c~ ~ ct s - o - ~ ~ c) ~ ~ o c~ ~ t~ ~ D O ~ c,: ~ _ ~ ._ _ O O O C'7 ~ ~ C~ _ Ct Ct ~ CL ~ S~ ~ = ~ C) o Ct ~ C~ ~ Ct :: _ ~ ~ ~ 0.1) V ~ Ct

OCR for page 119
FISH-MEAT SAUSAGE REFERENCES 145 1. Klettner, P. G., and P. A. Baumgartner. 1980. The technology of raw dry sausage manufacture. Food Technology in Australia 32:380. 2. Rodel, W., K. Krispien, and L. Leistner. 1979. Measuring water activity of meat and meat products. Fleischwirtschaft 59:649. 3. Baird-Parker, J. and B. Freame. 1967. Combined effect of water activity, pH and temperature on growth of Clostridium botulinum from spore and vegetative cell inocula. Journal of Applied Bacteriology 30:420. 4. Collins-Thompson, D. L., B. Krusky, and W. R. Usborne. 1984. The effect of nitrite on the growth of pathogens during the manufacture of dry and semi-dry sausages. Canadian Institute of Food Science and Technology Journal 17:102. 5. Labots, H. 1981. Aw und pH-wert konzept fur die enteilung von fleischerzengnissen in verberbliche und lagerfahige produkte. Fleischwirtschaft 61:1. 6. Graves, R. 1988. Sausage fermentation: New ways to control acidulation of meat. The National Provisioner. 7. Angel, S., and E. P. Moral 1991. The development of shelf stable fish, poultry and other meat products through energy saving fermentative processes. Final report, Project DPE 55446536035, sub- mitted to USAID, Washington, D.C.-U.S. Cooperative Development Research Program Between Israel and Costa Rica. 62 pp. 8. Leistner, L. 1986. Personal communication.

OCR for page 119
An Accelerated Process for Fish Sauce (Paris) Procluction R. C. Mabesa, E. V. Carpio, and It. B. Mabesa The single, probably most important, limitation in the manufacture of fish sauce is the length of time required for its production. It normally takes approximately 12 months from salting to maturity. This limits the turnover rate and overall profitability of a potentially lucrative enterprise. Considering the capital outlay and operating expense required to run a fish sauce business, it is imperative to develop a simple, economical, practicable accelerated process that yields acceptable fish sauce. With this goal, research and development efforts were undertaken at the food pilot plant of the Institute of Food Science and Technology, University of the Philippines at Los Banos. OBSERVATIONS This investigation stemmed from the observation in commercial tanks that freshly drawn fish sauce lacks the desirable aroma of mature sauce; this aroma develops after overnight storage or longer. The appropriate color is there initially but typical flavor is lacking. It was also observed that flavor, aroma, and color development of palls in both concrete and wooden vats is more rapid and pronounced during the hot summer months. Constant agitation through pumping and frequent transfer of fish sauce from one container to another also hastened and enhanced development of flavor and aroma. It was hypothesized, therefore, that artificial agitation and/or aeration and heat may help with the development of desirable qualities in fish sauce. Thus, small-scale laboratory experiments were carried out initially. It was determined that timing is of primary importance in the application of heat and aeration. The typical fish sauce characteristics did not 146

OCR for page 119
AN ACCELERATED PROCESS FOR FISH SAUCE 147 develop when freshly salted fish was aerated and heated immediately after mixing. Trials were carried out to determine the appropriate time for aeration and heating of the fish salt mixture. It was found that aging for about a month after salting was sufficient and that higher temperatures resulted in more rapid and greater improvement in quality. However, preliminary experiments indicate that the maximum temperature should not exceed 50C or a cooked flavor results. A concrete tank simulating the dimensions of a commercial tank was constructed to test the findings in the laboratory. Technical specifications are given below (see box). It was concluded that fish sauce comparable to traditionally manufactured sauce can be obtained in about 2 months or less using modified reaction conditions. These conditions are given under B and C. Sauce characteristics are given under D. It is likely that production time may be further reduced if strongly halophilic, proteolytic, and thermophilic Bacillus and Pediococcus species used in the laboratory can be used in production. DISCUSSION Fish sauce with the desirable qualities of traditionally produced sauce was obtained in the pilot plant. The improved process resulted in an acceptable product in about 2 months instead of the 10 to 12 months required for the traditional process. Clearly, savings in time and an improved turnover rate can result if these results are applied commercially. This means greater income-generating capacity. Some problems, such as loss of volume and contamination with molds and bacteria, were encountered during heating and aeration. The former was remedied by day-to-day monitoring of fish sauce levels and replenishment with plain tap water when necessary. The second problem was resolved by installing cotton filters at the intake end of the pumps and by adding sorbic acid to the sauce at 0.05 percent prior to bottling. CONCLUSION With pilot-level success, there is reason to believe that the process can be applied on a commercial scale. However, there are problems attendant to adaptation of the process. Additional expense will be incurred in equipment acquisition, installation, and operation. Heating and aeration alone will increase the price of palls by about P 50 per drum or about P 0.25 per liter. These costs must be weighed against

OCR for page 119
148 FERMENTED FOODS TECHNICAL SPECIFICATIONS A. Tank 1. Type concrete, cube approximately 0.265 m x 0.265 m x 0.265m I.D. 2. Material concrete 3:2:1 mixture of sand, gravel, and cement with Sahara water proofing added. 3. Heaters- two 1,000-watt rod-type heaters located close to the center of the tank. 4. Air pump one aquarium-type air pump with dis- charge capacity of 5 liters/minute; pump discharge located 2.5 centimeters below heaters. B. Operating Information 1. Preliminary incubation 50 days at ambient temper- ature. 2. Air pump operated 4 hours a day for 10 days. 3. Heaters operated 4 hours a day for 10 days. 4. Temperature 45 to 60C for 10 days. 5. Power requirement 7 amperes (pump and heater). 6. Voltage requirement220 volts. C. Raw Material Information 1. Total weight of fish salt mixture320 kilograms. 2. Proportion- 1 salt:2 fish by weight (106.6 kilograms salt:213.3 kilograms fish). 3. Fish species Decapterus macrosoma. 4. Source Navotas Fishery Port. D. Sauce Characteristics 1. Color golden yellow-brown highly typical of fish sauce and clear. 2. Odor slightly acidic and fishy, typical of fish sauce. 3. Flavor typical fish sauce. 4. Total solids 41 percent. Protein 14 percent. pH 6.0. Salt 24 percent. 8. Specific gravity 1.21. Yield 137.5 kilograms. savings or advantages such as faster turnover rate, decreased overhead, salaries, and power. Each manufacturer or potential user of a new technology such as this stands to gain substantially despite the additional costs. However,

OCR for page 119
AN ACCELERATED PROCESS FOR nSH SAUCE 149 each interested user may kind his or her ~tuabon unique. A careful study of ~11 terms, Actors, and conditions acting ~ user should be undertaken before embarking on ~ new and innovadve process such as this. In light of these results and consequent problems, ends are under may in the laboratory to reduce process costs, particularly with respect to reducing hewing time, minimizing heat losses, increasing hewing efficiency, and exploring akernadve sources of energy far use in the process.

OCR for page 119