Questions? Call 800-624-6242

| Items in cart [0]

PAPERBACK
price:\$10.95

## Measuring Up: Prototypes for Mathematics Assessment (1993) Mathematical Sciences Education Board (MSEB)

### Citation Manager

. "The Checkers Tournament." Measuring Up: Prototypes for Mathematics Assessment. Washington, DC: The National Academies Press, 1993.

Please select a format:

 Page 31

The following HTML text is provided to enhance online readability. Many aspects of typography translate only awkwardly to HTML. Please use the page image as the authoritative form to ensure accuracy.

Measuring Up: Prototypes for Mathematics Assessment

### The Checkers Tournament

 Broaden the view of mathematics appropriate for the 4th grade Translate information from one form to another Count without usual representations Deduce information presented as a graph

Suggested time allotment

One class period

Student social organization

Students working alone or in pairs

Assumed background: This task presents information in the form of a directed graph, which is a way of showing relationships among objects. In this case, the dots represent people; they are connected with arrows indicating a certain mathematical relation: an arrow from A to B means ''A won the game that A and B played." Some groups of children, for example ones that use the Comprehensive School Mathematics Program (McREL, 1992), will be familiar with a similar notation, and hence will need little teacher introduction. The task, however, does not assume familiarity with the notation. (Clearly it would be inappropriate to use this task to compare classes to whom this notation is familiar with classes to whom it is not.)

Children should have had some prior experience in "translating" from one

 Page 31
 Front Matter (R1-R10) Introduction (1-3) The Challenge (4-4) The Criteria (5-6) The Caveats (7-7) The Audience (8-8) The Prototypes (9-11) The Tryouts (12-12) The Format (13-13) The Protorubrics (14-15) The Standards (16-18) The Future (19-20) The Prototypes (21-22) Mystery Graphs (23-30) The Checkers Tournament (31-42) Bridges (43-52) Hexarights (53-64) Bowl-A-Fact (65-74) Point of View (75-84) The Quilt Designer (85-94) How Many Buttons? (95-100) The Taxman (101-114) Lightning Strikes Again (115-124) Comparing Grizzly Bears and Black Bears (125-132) The Towers Problem (133-140) The Hog Game (141-156) Resources (157-160) Mathematical Sciences Education Board (161-164) Credits (165-166)

Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 31
Measuring Up: Prototypes for Mathematics Assessment The Checkers Tournament Broaden the view of mathematics appropriate for the 4th grade Translate information from one form to another Count without usual representations Deduce information presented as a graph Suggested time allotment One class period Student social organization Students working alone or in pairs Task Assumed background: This task presents information in the form of a directed graph, which is a way of showing relationships among objects. In this case, the dots represent people; they are connected with arrows indicating a certain mathematical relation: an arrow from A to B means ''A won the game that A and B played." Some groups of children, for example ones that use the Comprehensive School Mathematics Program (McREL, 1992), will be familiar with a similar notation, and hence will need little teacher introduction. The task, however, does not assume familiarity with the notation. (Clearly it would be inappropriate to use this task to compare classes to whom this notation is familiar with classes to whom it is not.) Children should have had some prior experience in "translating" from one

OCR for page 32
Measuring Up: Prototypes for Mathematics Assessment symbolic representation of a situation to another. In this case, the directed graph representation is to be transformed into a list of players ordered on the basis of their tournament records so far. Presenting the task: If students are not already familiar with the directed graph notation, the teacher should introduce it (without the terminology "directed graph") as a means of displaying information about four students in a Tic-Tac-Toe tournament. The teacher should explain the situation and ask simple questions such as: Which students has Linda played? [Lourdes, Ed and Bob.] Which games did she win? [The ones against Lourdes and Ed.] Which games did she lose? [The one against Bob.] Find two students who have not played against each other yet. [Lourdes and Ed; Ed and Bob.] Who has played the fewest games? [Ed, with only one game played so far.] Student assessment activity: The teacher should pass out copies of the student sheet and read through the introduction and question 1, to be sure that everyone has an understanding of the meaning of the dots and the arrows. A Spanish translation of the task appears immediately following the English version.

OCR for page 33
Measuring Up: Prototypes for Mathematics Assessment Name ________________________________________ Date _____________ Six children are in a checkers tournament. The figure below shows the results of the games played so far. (Remember, in the picture, an arrow like means that José won his game against Alex. The arrow always points from the winner to the loser.) Who won the game between Pat and Robin? _____ Which children has Lee already played against? ______ Which of those games did Lee win? ______ How many games have been played by the children so far? _____ Explain how you know.

OCR for page 34
Measuring Up: Prototypes for Mathematics Assessment Make a table showing the current standings of the six children. Put the player who has won the most games in first place, at the top. If two players are tied, they can be listed in either order.   Name Wins Losses 1. ______________ _______ _______ 2. ______________ _______ _______ 3. ______________ _______ _______ 4. ______________ _______ _______ 5. ______________ _______ _______ 6. ______________ _______ _______ The tournament will be over when everybody has played everybody else exactly once. How many more games need to be played to finish the tournament? ______ Explain your answer. Dana and Lee have not played yet. Who do you think will win when they play? ______ Explain why you think so.

OCR for page 35
Measuring Up: Prototypes for Mathematics Assessment Nombre ________________________________________ Fecha _____________ Seis niños participan en un torneo de Damas. El dibujo representa los resultados de los partidos que han sido jugados hasta el momento. (Recuerda que en el dibujo una flecha como esta significa que José le ganó el partido a Alex. La flecha siempre senala del ganador al perdedor.) ¿Quién ganó el partido entre Pat y Robin? ______ ¿Contra qué niños ya ha jugado Lee? ______ ¿Cuál o cuáles de esos partidos ganó Lee? ______ ¿Cuántos partidos en total han jugado todos los niños hasta el momento? ______ Explica tu contestación.

OCR for page 36
Measuring Up: Prototypes for Mathematics Assessment Haz una tabla que demuestre la posición de los seis niños. Coloca al jugador o jugadora que ha ganado la mayor cantidad de partidos en el primer lugar; en la primera línea. Si hay un empate entre dos jugadores, puedes colocarlos en cualquier orden.   Nombre Partidos ganados Partidos perdidos 1. ________________________ __________________ __________________ 2. ________________________ __________________ __________________ 3. ________________________ __________________ __________________ 4. ________________________ __________________ __________________ 5. ________________________ __________________ __________________ 6. ________________________ __________________ __________________ El torneo terminará cuando todo el mundo haya jugado contra todo el mundo exactamente una vez. ¿Cuántos partidos faltan por jugar para que el torneo termine? Explica tu contestación. Dana y Lee no han jugado todavía. ¿Quién crees que ganará cuando jueguen? ______ Explica el por qué tu piensas así.

OCR for page 37

OCR for page 38
Measuring Up: Prototypes for Mathematics Assessment games are needed?" Children in a pilot test interpreted the question in both ways. Because there was nothing to be gained by the ambiguity, it is now "How many more games need to be played to finish the tournament?" The Spanish translation of the task is included to highlight the need for assessment designers and teachers to be sensitive to the nuances of language. This translation, like the one of the Taxman task, has been done in the informal form. Some students (for example, those from Costa Rica) will not be used to this form. Also, note that question 3, "Which of those games did Lee win?" has been translated as "¿Cuál o cuáles de esos partidos ganó Lee?" Using only "cuál" or "cuáles" by itself would prejudge the situation by telling the student whether there is one game or more than one. Variants and extensions: Several variants come to mind immediately. One can add players, add or change the directions of the arrows, and ask other kinds of questions — for example, "If there were 7 players, how many games would there be if everyone played everyone else exactly once?" One can extend the setting to relations that are transitive — for example, an arrow pointing from A to B means that "A is taller than B." This relation, unlike the one in this task, is transitive, and so one can infer that if there are arrows from A to B and from B to C, then there must be an arrow from A to C. Indeed, there are dozens of variations on the theme of presenting information about relations among objects through the use of arrow diagrams (directed graphs). These objects can be numbers, geometric figures, or other mathematical entities, as well as people. Protorubric Characteristics of the high response: The high-level response is one that shows an understanding of the situation as a whole — what the various components of the directed graph represent, and how that representation relates to the other representation. One expects that all answers will be correct. In question 4, the justification for asserting that 9 games have been played so

OCR for page 39
Measuring Up: Prototypes for Mathematics Assessment far is something to the effect that (a) there are 9 arrows or that (b) each of 6 players has competed in 3 games, which means a total of 18 wins and losses. Since each game produces a win and a loss, there must have been 9 games. Note that in question 5, ties arise for 2nd and 3rd places in the ranking, as well as for 4th and 5th. Therefore, either order within those pairs is correct. In question 6, the correct answer, 6, can be obtained by enumerating the pairs who have not played. Alternately, the child may see that there will be a total of 15 games, and, since 9 have been played, 6 remain. In question 7, the rationale could be any of the following: Since Dana beat Alex and Alex beat Lee, I think Dana will beat Lee. Since both Dana and Lee have identical 2-1 records, we cannot predict who will win.

OCR for page 40
Measuring Up: Prototypes for Mathematics Assessment Dana and Lee have identical 2-1 records, but Dana lost to Pat, the best player at 3-0, while Lee lost to José, whose record is only 1 win, 2 losses. Therefore, Dana seems to be the stronger player, and so I think Dana will win. If one were to make finer distinctions within the "high" category, it is important to note that response a, above, makes an argument that is not fully justified by the situation. As already mentioned, the relation is not transitive, and hence the outcome of the Dana-Lee game is not necessarily a win by Dana. So "I think Dana will beat Lee" is a better response than simply "Dana will beat Lee." Characteristics of the medium response: The student can interpret the meaning of individual arrows correctly and can determine how many games have been played so far. Thus questions 1 through 4 are mostly answered correctly. The response to question 5, however, indicates difficulty in connecting the arrow-diagram notation with the table showing the standings of the players. One or two pairs of names may be in the incorrect order. In question 6, the child may erroneously conclude that a total of 30 games will be played (6 people, 5 games each) and hence give an answer of 21. This answer shows greater insight than one that is closer to the correct answer but was obtained by incorrectly counting the missing arrows. The rationale offered in question 7 is based on a correct interpretation of some of the information presented in the

OCR for page 41
Measuring Up: Prototypes for Mathematics Assessment arrow diagram, but does not present any kind of complete argument. For example, the student may say something like, ''Dana, because Dana beat Alex," or "Lee, because Lee beat two people," or "You can't tell, because they both lost to Robin." Characteristics of the low response: Questions 1 through 3 are answered correctly. However, there is little awareness of the relationship between the arrows in the diagram and the games that have been played. Hence responses to questions 4 through 6 are incorrect or lack any kind of justification. The response to question 7 may be based on subjective feelings that have no basis in the information supplied in the arrow diagram. For example, the child may say something like "Dana, because I think she's better." Reference Mid-continent Regional Educational Laboratory (1992). Comprehensive School Mathematics Program. Aurora (CO): Author.

OCR for page 42
Measuring Up: Prototypes for Mathematics Assessment This page in the original is blank.

Representative terms from entire chapter:

directed graph