National Academies Press: OpenBook
« Previous: 9 RECOMMENDATIONS
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Bibliography

Abbott, N. L., G. M. Whitesides, L. M. Racz, and J. Szekely. 1993. Calculating the shapes of geometrically confined drops of liquid on patterned, self-assembled monolayers; a new method to estimate small contact angles. J. Am. Chem. Soc. Submitted.

Abinandanan, T. A., and W. C. Johnson. 1992. Acta Metall. Mater. In press.

Abraham, F. F. 1986. Adv. Phys. 35:1.

Abraham, F. F., and D. R. Nelson. 1990. Science 249:393.

Achenbach, J. D. 1992. J. Sound Vib. 159:385.

Akcasu, A. Z., and I. C. Sanchez. 1988. J. Chem. Phys. 88:7847.

Alber, I., J. L. Bassani, M. Khantha, V. Vitek, and G. J. Wang. 1992. Grain boundaries as heterogeneous systems: atomic and continuum elastic properties. Philos. Trans. R. Soc. London, Ser. A 339:555–586.

Alfonso, C., J. M. Bermond, J. C. Heyraud, and J. J. Metois. 1992. Surf Sci. 262:371.

Allaire, G., and R. Kohn. 1992. Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Q. Appl. Math. In press.

Almdal, K., J. H. Rosedale, F. S. Bates, G. D. Wignall, and C. H. Fredcrickson. 1990. Phys. Rev. Lett. 65:1112.

Almgren, F. J. 1976. Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Memoirs of the American Mathematical Society, No. 165. Providence, R.I.: AMS. 199 pp.

Almgren, F., and J. E. Taylor. 1992. Motion of curves by crystalline curvature and flat curvature flow. Preprint. Submitted for publication.

Almgren, F., and L. Wang. 1993. Mathematical existence of crystal growth with Gibbs-Thomson curvature effects. Preprint.

Almgren, F., J. E. Taylor, and L. Wang. 1993. Curvature driven flows: a variational approach. SIAM J. Control and Optim. 31:387–438.

Amundson, K. R., J. A. Reimer, and M. M. Denn. 1991. Investigation of microstructure in poly[(p-hydroxybenzoic acid)-co-(ethylene terephthalate)] using nuclear magnetic resonance spectroscopy. Macromolecules 24:3250–3260.

Anastasiadis, S. H., I. Gancarz, and J. T. Koberstein. 1988. Macromolecules 21:2980.

Anastasiadis, S. H., T. P. Russell, S. K. Satija, and C. F. Majkrzak. 1990. J. Chem. Phys. 92:5677.

Angell, C. A., and M. Goldstein, eds. 1986. Dynamic Aspects of Structural Change in Liquids and Glasses. Ann. N. Y. Acad. Sci., Vol. 484.

Angier, N. 1992. When proteins come to life, 'chaperones' show the way. New York Times (Feb. 11):B5, C1.

Appelbaum, J. A., G. A. Baraff, and D. R. Hamann. 1975. Phys. Rev. B 11:3822.

Ashby, M. 1991. Materials and shape. Acta Metall. Mater. 39:1025–1039.

Atthey, D. R. 1974. J. Inst. Math. Appl. 13:353–366.

Auston, D. H., et al. 1987. Research on nonlinear optical materials: an assessment. Appl. Opt. 26:211. [A collective effort of forty-eight experts.]

Auzerais, F. M., R. Jackson, W. B. Russel, and W. F. Murphy. 1990. The transient settling of stable and flocculated dispersions. J. Fluid Mech. 221:613–639.

Avellaneda, M. 1987a. Optimal bounds and

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

microgeometries for elastic two-phase composites. SIAM J. Appl. Math. 47:1216–1228.

Avellaneda, M. 1987b. Iterated homogenization, differential effective medium theory and applications. Commun. Pure Appl. Math. 40:527.

Avellaneda, M., A. Cherkaev, K. Lurie, and G. Milton. 1988. On the effective conductivity of polycrystals and a three-dimensional phase interchange inequality. J. Appl. Phys. 63:4989–5003.

Babuska*, I., and A. Miller. 1984. A post-processing approach in the finite element method, Part 2: The calculation of stress intensity factors. Int. J. Numer. Methods Eng. 12:1111–1130.

Bakirtas, I. 1980. Int. J. Eng. Sci. 18:597–610.

Ball, J., and R. James. 1987. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100:13–52.

Ball, J., and R. James. 1992. Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. London, Ser. A 338:389–450.

Ball, J., P. Holmes, R. James, R. Pego, and P. Swart. 1991a. On the dynamics of fine structure. J. Nonlin. Sci. 1:17–70.

Ball, R. C., J. F. Marko, S. T. Milner, and T. A. Witten. 1991b. Polymers grafted to a convex surface. Macromolecules 24:693–703.

Baraff, G. A., and M. Schlüter. 1978. Phys. Rev. Lett. 41:891.

Baskes, M. I., R. G. Hoagland, and A. Needleman. 1992. Mater. Sci. Eng. 159:1–34.

Bates, F. S. 1991. Polymer-polymer phase behavior. Science 251(4996):898–905. [This February 22, 1991, issue of Science contains a section focusing on polymers.]

Bates, F. S., and G. H. Frederickson. 1990. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41:525–557.

Bates, F. S., S. B. Dierker, and G. D. Wignall. 1984. Macromolecules 19:1938.

Bates, F. S., J. H. Rosedale, and G. H. Frederickson. 1990. J. Chem. Phys. 92:6255.

Bendse, M., and N. Kikuchi. 1988. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71:197–224.

Bendse, M., and C. A. Mota Soares, eds. 1992. Topology Design of Structures. Boston: Kluwer.

Bensoussan, A., L. Boccardo, and F. Murat. 1986. Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth. Commun. Pure Appl. Math. 39:769–805.

Berg, B. A. 1993. Locating global minima in optimization problems by a random-cost approach. Nature 361(25 February):708–710.

Bergman, D. J. 1991. Pp. 67–80 in Composite Media and Homogenization Theory. G. Dal Maso and G. F. Dell'Antonio, eds. Berlin: Birkhauser.

Berne, B. J., and D. Thirumalai. 1986. Annu. Rev. Phys. Chem. 37:401.

Bernholc, J., N. O. Lipari, and S. T. Pantelides. 1978. Phys. Rev. Lett. 41:895.

Bhattacharya, K. 1991. Wedge-like microstructure in martensites. Acta Metall. Mater. 39:2431–2444.

Bhattacharya, K. 1993. Self-accommodation in martensite. Arch. Ration. Mech. Anal. In press.

Bhave, A., R. C. Armstrong, and R. A. Brown. 1991. Kinetic theory and rheology of dilute non-homogeneous polymer solutions. J. Chem. Phys. 95:2988–3000.

Binder, K., and H. L. Frisch. 1984. Macromolecules 17:2928.

Binder, K., and A. P. Young. 1986. Rev. Mod. Phys. 58:801.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Binnig, B., and H. Rohrer. 1987. Rev. Mod. Phys. 59:615.

Bird, R. B. 1987. Mathematical problems in the kinetic theory of polymeric fluids. In Amorphous Polymers and non-Newtonian Fluids. C. Dafermos, J. L. Ericksen, and D. Kinderlehrer, eds. Institute for Mathematics and Its Applications, Vol. 6. New York: Springer-Verlag.

Bird, R. B., R. C. Armstrong, and O. Hassager. 1987a. Dynamics of Polymeric Liquids, Vol. 1. Fluid Mechanics. 2nd ed. New York: Wiley.

Bird, R. B., O. Hassager, R. C. Armstrong, and C. F. Curtis. 1987b. Dynamics of Polymeric Liquids, Vol. 2. Kinetic Theory. 2nd ed. New York: Wiley.

Birmingham, D., M. Blau, M. Rakowski, and G. Thompson. 1991. Phys. Rep. 209:129.

Bishop, D. I., P. L. Gammel, and D. A. Huse. 1993. Resistance in high temperature superconductors. Sci. Am. 268(2):48–55.

Blotckjaer, K. 1970. IEEE Trans. Educ. 17:38.

Blue, J. L., and M. R. Scheinfein. 1991. Using multipoles decreases computation times for magnetostatic self-energy . IEEE Trans. Magn. 27:4780–4798.

Blumenfeld, R., and D. J. Bergman. 1991. Strongly nonlinear composite dielectric: A perturbation method for finding the potential field and bulk effective properties. Phys. Rev. B44:7378–7386.

Boehncke, K., M. Nonella, and K. Schulten. 1991. Biochemistry 30:5465.

Boettinger, W. J., A. A. Wheeler, B. T. Murray, G. B. McFadden, and R. Kobayashi. 1993. A phasefield, diffuse interface solidification model for pu re metals and binary alloys. In Modeling of Coarsening and Grain Growth. S. P. Marsh and C. Pande, eds. Greenville, S.C.: TMS Publishing.

Borucki, L. 1993. Modeling the growth and annealing of dislocation loops. In Semiconductors. J. Cole, W. M. Cunghran, B. White., F. Odeh, and P. Lloyd, eds. Institute for Mathematics and Its Applications. New York: Springer-Verlag. To appear.

Boyer, E. L. 1990. Scholarship Reconsidered: Priorities of the Professoriate. Princeton, N.J.: The Carnegie Foundation for the Advancement of Teaching. 147 pp.

Brady, J., and G. Bossis. 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–157.

Braides, A., V. C. Piat, and A. Defranceschi. 1962. Homogenization of almost periodic monotone operators. Ann. Inst. Henri Poincaré 9:399–432.

Brakke, K. 1978. The Motion of a Surface by Its Mean Curvature. Princeton, N.J.: Princeton University Press.

Brakke, K. A. 1992a. The surface evolver. Exp. Math. 1(2):141–165.

Brakke, K. A. 1992b. The Surface Evolver Manual, Version 1.87. Research Report GCG45. The Geometry Center, Minneapolis, Minn. October.

Brattkus, K., and D. Meiron. 1992. Numerical simulations of unsteady crystal growth. SIAM J. Appl. Math. 52:1303–1320.

Brener, E. A., and V. I. Mel'nikov. 1991. Pattern selection in 2-dimensional dendritic growth. Adv. Phys. 40:53–97.

Broseta, D., C. H. Fredrickson, E. Helfand, and L. Leibler. 1990. Macromolecules 23:132.

Brostow, W., and R. D. Corneliussen, eds. 1986. Failure of Plastics. New York: Hanser Publishers.

Brown, R. A. 1988. Theory of transport processes in single crystal growth from the melt. AIChE J. 34:881–911.

Brown, W. F., Jr. 1963. Micromagnetics. Interscience Publishers. New York: Wiley.

Bryngelson, J. D., and P. G. Wolynes. 1990. Biopolymers 30:177.

Budiansky, B., J. W. Hutchinson, and J. C.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Lamhropoulos. 1983. Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19:337–355.

Burton, W. K., N. Cabrera, and F. C. Frank. 1951. Philos. Trans. R. Soc. London 243A:299.

Buscall, R., and L. R. White. 1987. The consolidation of concentrated suspensions. J. Chem. Soc. Faraday Trans. 1 83:873–891.

Caffarelli, L. A., and A. Friedman. 1988. A model of dislocations and the associated free boundary problem. Indiana Univ. Math. J. 37:451–479.

Caginalp, G. 1989. Stefan and Hele-Shaw type models as asymptotic limits of phase field equations. Phys. Rev. A 39:887–896.

Cahn, J. W., and D. Gratias. 1987. Quasi-periodic crystals: a revolution in crystallography. Pp. 151–160 in Advancing Materials Research. P. A. Psaras and H. D. Langford, eds. Washington, D.C.: National Academy Press.

Cahn, J. W., and J. E. Hilliard. 1958. Free energy of a nonuniform system, I: Interfacial free energy. J. Chem. Phys. 28:258.

Cahn, J. W., and F. Larché. 1984. A simple model for coherent equilibrium. Acta Metall. 32:1915–1923.

Cahn, J. W., and J. E. Taylor. 1988. Theory of orientation textures due to surface energy anisotropies. J. Electron. Mater. 17:443–445.

Cahn, J. W., and J. E. Taylor. 1989. The influence of equilibrium shape on heterogeneous nucleation textures. Pp. 545–561 in Phase Transformations '87. G. Lorimer, ed. London: Institute of Metals.

Cahn, J. W., J. E. Taylor, and C. A. Handwerker. 1991. Evolving crystal forms: Frank's characteristics, revisited. Pp. 88–118 in Sir Charles Frank OBE, FRS: An Eightieth Birthday Tribute. R. G. Chambers et al., eds. Bristol: Adam Hilger.

Callaway, J. 1991 Quantum Theory of the Solid State. Second ed. New York Academic Press. 954 pp

Callaway, J., and N. H. March. 1984. Density functional methods: theory and applications. Solid State Phys. 38:135–221. (Also in R. G. Parr and W. Yang. 1989. Density Functional Theory of Atoms and Molecules. New York: Oxford University Press.)

Car, R., and M. Parrinello. 1985. Phys. Rev. Lett. 55:2471.

Ceperley, D., and E. Pollock. 1984. Phys. Rev. B39:2084.

Chakrabarti, B. K. 1991. Rev. Solid State Sci. 2:559.

Chan, H. S., and K. A. Dill. 1991a. Annu. Rev. Biophys. Chem. 20:447.

Chan, H. S., and K. A. Dill. 1991b. J. Chem. Phys. 95:3775.

Chan, H. S., and K. A. Dill. 1993. The protein folding problem. Phys. Today 46(2):24–32.

Chandler, D. 1982. P. 274 in Studies in Statistical Mechanics, Vol. 8. E. Montroll and J. Lebowitz, eds. Amsterdam: North-Holland.

Chandler, D., and P. G. Wolynes. 1981. J. Chem. Phys. 74:4078.

Chapman, S. J., S. D. Howison, and J. R. Ockendon. 1992. Macroscopic models for superconductivity. SIAM Rev. 34:529–560.

Chemla, D. S. 1993. Nonlinear optics in quantum-confined structures. Phys. Today 46(6):46–55.

Chen, I.-W. 1992. A model of transformation toughening in brittle materials. J. Am. Ceram. Soc. 74(10):2564–2572.

Chen, I.-W., and P. E. Reyes Morel. 1986. Implications of transformation plasticity in Zr-O2-containing ceramics I: Shear and dilatation effects. J. Am. Ceram. Soc. 69:181–189.

Chen, L. X.-Q., J. W. Petrich, G. R. Fleming, and A. Perico. 1987. Chem. Phys. Lett. 139:55.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Chen, X., and F. Reitich. 1990. Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling. IMA Tech. Rpt. 715. November. [Also, J. Math. Anal. Appl., to appear.]

Cherkaev, A. V., and L. V. Gibiansky. 1992. The exact coupled bounds for effective tensors of electrical and magnetic properties of two-component, two-dimensional composites . Proc. R. Soc. Edinburgh, Sect. A. To appear.

Chin, D., S. Y. Oh, S. M. Hu, R. W. Dutton, and J. L. Moll. 1983. Two-dimensional oxidation. IEEE Trans. Electron. Devices ED-30:744–749.

Ching, W. Y. 1990. J. Am. Ceram. Soc. 73(11):3135–3160. [A review that may be useful to the nonspecialist.]

Christian, J. 1975. The Theory of Transformations in Metals and Alloys. Elmsford, N.Y.: Pergamon Press.

Chui, C. K. 1992. An Introduction to Wavelets. New York: Academic Press.

Ciferri, A., ed. 1991. Liquid Crystallinity on Polymers. New York: VCI Publishers.

Cole, D. C., E. M. Buturla, S. S. Furkay, K. Varahramyan, J. Slinkman, J. A. Mandelman, D. P. Foty, O. Bula, A. W. Strong, J. W. Park, T. D. Linton, J. B. Johnson, M. V. Fischetti, S. E. Laux, P. E. Cottrell, H. G. Lustig, F. Pileggi, and D. Katcoff. 1990. Solid-State Electron. 33:591.

Collins, C., and M. Luskin. 1989. The computation of the austenitic-martensitic phase transition. Pp. 34–50 in Partial Differential Equations and Continuum Models of Phase Transitions. Lecture Notes in Physics, Vol.344. M. Rascle, D. Serre, and M. Slemrod, eds. New York: Springer-Verlag.

Collins, C., and M. Luskin. 1991. Optimal order estimates for the numerical approximation of the solution of a variational problem with a double well potential. Math. Comput. 57:621.

Collins, C., D. Kinderlehrer, and M. Luskin. 1991. Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28:321–332.

Collins, C., M. Luskin, and J. Riordan. 1993. Computational results for a two-dimensional model of crystalline microstructure. In Microstructure and Phase Transitions. Institute for Mathematics and Its Applications, volumes on mathematics and its applications. R. James, D. Kinderlehrer, and M. Luskin, eds. New York: Springer-Verlag. To appear.

Coron, J.-M., J.-M. Ghidaglia, and F. Helein, eds. 1991. Nematics: Mathematical and Physical Aspects. Boston: Kluwer.

Cowley, R. A. 1964. Adv. Phys. 12:421.

Crank, J. 1975. The Mathematics of Diffusion. Second edition. New York: Oxford University Press.

Curro, J. G., and K. S. Schweizer. 1987. J. Chem. Phys. 87:1842.

Dal Maso, G., and G. F. Dell'Antonio, eds. 1991. Composite Media and Homogenization Theory. International Centre for Theoretical Physics workshop, Trieste, Italy, January 1990. Boston: Birkhauser.

Davini, C. 1986. A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96:295–317.

Davini, C., and G. Parry. 1993. On defect-preserving deformations in crystals. Preprint.

Dawson, K. A. 1987. Phys. Rev. A 35:1766.

de Gennes, P.-G. 1974. The Physics of Liquid Crystals. New York: Oxford University Press.

de Gennes, P.-G. 1979. Scaling Concepts in Polymer Physics. Ithaca, N.Y.: Cornell University Press.

de Gennes, P.-G. 1980. J. Chem. Phys. 72:4756.

de la Cruz, M. O., and I. C. Sanchez. 1986.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Macromolecules 19:2801.

Delbruck, M. 1962. Proc. Symp. Appl. Math. 4:55.

Denn, M. M. 1988. Processing, modeling. Pp. 425–444 in Encyclopedia of Polymer Science and Engineering, Vol. 13. J. I. Kroschwitz, ed. New York: Wiley.

Denn, M. M. 1990. Issues in viscoelastic fluid mechanics. Annu. Rev. Fluid Mech. 22:13–34.

Denn, M. M. 1992. Pp. 45–49 in Theoretical and Applied Rheology. P. Moldenaers and R. Keunings, eds. New York: Elsevier.

De Raedt, H., and W. von der Linden. 1992. In The Monte Carlo Method in Condensed Matter Physics. K. Binder, ed. New York: Springer-Verlag.

De Simone, A. 1993. Micromagnetics of large bodies. Arch. Ration. Mech. Anal. To appear.

Doi, M., and S. F. Edwards. 1986. The Theory of Polymer Dynamics. New York: Oxford University Press.

Doll, J. D., and J. E. Gubernatis, eds. 1990. Quantum Simulations of Condensed Matter Systems. Singapore: World Scientific.

Doll, J. D., D. L. Freeman, and T. L. Beck. 1990. Adv. Chem. Phys. 78:61.

Donald, A. M., and A. H. Windle. 1992. Liquid Crystalline Polymers. New York: Cambridge University Press.

Dong, P., and J. Pan. 1991. Elastic-plastic analysis of cracks in pressure-sensitive materials. Int. J. Solids Struct. 28:1113–1127.

Doolen, G. D., ed. 1991. Lattice Gas Methods: Theory, Applications, and Hardware. Cambridge, Mass.: MIT Press. [Also, special issue of Physica D 47, 1991.]

Douglas, J. F. 1989a. Macromolecules 22:2412.

Douglas, J. F. 1989b. Macromolecules 22:3707.

Douglas, J. F., A. M. Nemirovsky, and K. F. Freed. 1986a. Macromolecules 19:2041.

Douglas, J. F., S.-Q. Wang, and K. F. Freed. 1986b. Macromolecules 19:2207.

Douglas, J. F., J. Roovers, and K. F. Freed. 1990. Macromolecules 23:4168.

Drucker, D. C., and W. Prager. 1952. Solid mechanics and plastic analysis or limit design. Q. Appl. Math. 10:157–165.

Du, Q., M. D. Gunzburger, and J. S. Peterson. 1992. Analysis and approximation of the Ginzburg-Landau model of superconductivity . SIAM Rev. 34:54–81.

Dudowicz, J., and K. F. Freed. 1991a. Macromolecules 24:5076.

Dudowicz, J., and K. F. Freed. 1991b. Macromolecules 24:5112.

Dudowicz, J., and K. F. Freed. 1992a. J. Chem. Phys. 96:1644.

Dudowicz, J., and K. F. Freed. 1992b. J. Chem. Phys. 96:2105.

Dudowicz, J., and K. F. Freed. 1992c. J. Chem. Phys. 96:9147

Dudowicz, J., K. F. Freed, and W. G. Madden. 1990. Macromolecules 23:4803.

Duxbury, P. M., and S. C. Kim. 1991. Scaling theory of elasticity and fracture in disordered networks. Mater. Res. Soc. Symp. 207:179.

Duxbury, P. M., P. L. Leath, and P. D. Beale. 1987. Breakdown of quenched random systems: The random fuse network. Phys. Rev. B36:367.

Duxbury, P. M., P. D. Beale, H. Bak, and P. A. Schroeder. 1990. Capacitance and dielectric breakdown of metal loaded dielectrics. J. Phys. D23 :1546.

Duxbury, P. M., P. D. Beale, H. Bak, and P. A. Schroeder. 1991. Cracks and critical current. J.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Appl. Phys. 70:3164

Eaglesham, D. J., H.-J. Gossman, and M. Cerullo. 1990. Phys. Rev. Lett. 65:1227.

El-Kareh, A. W., and L. G. Leal. 1989. Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J. Non-Newtonian Fluid Mech. 33:257–287.

Ellis, D. E., J. Guo, and D. J. Lam. 1990. Embedded cluster model of oxide ceramics. J. Am. Ceram. Soc. 73:3231.

Ellis, D. E., J. Guo, and D. J. Lam. 1991. Embedded cluster models of ceramic electronic properties. Rev. Solid State Sci. 5:282. (Also at p. 227 in Quantum Mechanical Cluster Calculations in Solid State Studies. R. W. Grimes, C. R. A. Catlow, and A. L. Shluger, eds. 1992. Singapore: World Scientific.)

Ericksen, J. L. 1976. Adv. Liq. Cryst. 2:233.

Eshelby, J. D. 1975. Point defects. In The Physics of Metals, Vol. 2. I. B. Hirsh, ed. New York: Cambridge University Press.

Estrin, D. A., L. Liu, and S. J. Singer. 1992. J. Phys. Chem. 96:5325.

Evans, L. C. 1992. Periodic homogenization of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinburgh 120 A:245–265.

Evans, R. 1979. Adv. Phys. 28:143.

Exner, H. E., and H. P. Hougardy, eds. 1988. Quantitative Image Analysis of Microstructure. Berlin: DGM lnformationsgesellschaft Verlag.


Fan, H., L. M. Keer, and T. Mura. 1991. The effect of plastic deformation on crack initiation in fatigue. Int. J. Solids Struct. 9(9):1095–1104.

Federal Coordinating Council for Science, Engineering and Technology. 1992. Advanced Materials and Processing: The Fiscal Year 1993 Program. Committee on Industry and Technology. Washington, D.C.: Office of Science and Technology Policy.

Feigenbaum, M. 1978. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19:25–52.

Feigenbaum, M. 1981. Universal behavior in nonlinear systems. Los Alamos Sci. 1:4–27.

Feller, W. 1971. An Introduction to Probability Theory and Its Applications, Volume II. 2nd ed. New York: Wiley. 669 pp.

Ferrenberg, A. M., D. P. Landau, and Y. J. Wong. 1992. Phys. Rev. Lett. 69:3382–3384.

Fetter, A. L., and J. D. Walceka. 1971. Quantum Theoiy of Many-Body Systems. Ch. 13. New York: McGraw-Hill.

Feynman, R. P. 1972. Statistical Physics. New York: Benjamin.

Fife, P. C. 1988. Dynamics of internal layers and diffusive interfaces. In CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 53. Philadelphia: Society for Industrial and Applied Mathematics.

Firth, W. J., and C. Paré. 1988. Opt. Lett. 13:1096.

Fischer, K. H., and J. A. Hertz. 1990. Spin Glasses. New York: Cambridge University Press.

Fischetti, M. V., and S. E. Laux. 1988. Phys. Rev. B 38:9721.

Fischetti, M. V., and S. E. Laux. 1991. IEEE Trans. Educ. 38:650.

Fleury, F. 1980. Propagation of waves in suspension of solid particles. Wave Motion 2:39–50.

Flory, P. J. 1941. J. Chem. Phys. 9:660.

Flory, P. J. 1942. J. Chem. Phys. 10:51.

Flory, P. J. 1953. Principles of Polymer Chemistry. Ithaca, N.Y.: Cornell University Press.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Flory, P. J. 1969. The Statistical Mechanics of Chain Molecules. New York: Wiley-Interscience.

Fork, R. L., G. H. Brito Cruz, P. C. Becker, and C. V. Shank. 1987. Opt. Lett. 12:483.

Fortes, M. A., and A. S. Ferro. 1985. Acta Metall. 33:1697.

Francfort, G. A., and F. Murat. 1986. Homogenization and optimal hounds in linear elasticity. Arch. Ration. Mech. Anal. 94:307.

Frank, F. C. 1972. Z. Phys. Chem. N. F. 77:84–92.

Frederickson, G. H., and F. Helfand. 1987. J. Chem. Phys. 87:697.

Freed, K. F. 1983. Acc. Chem. Res. 16:137.

Freed, K. F. 1987. Renormalization Group Theory of Macromolecules. New York: Wiley-Interscience.

Freed, K. F. 1989. Lect. Notes Chem. 52:1.

Freed, K. F., and M. Levy. 1982. J. Chem. Phys. 77:396.

Freed, K. F., and M. G. Bawendi. 1989. J. Phys. Chem. 93:2194.

Freed, K. F., and J. Dudowicz. 1992. Theor. Chim. Acta 82:357.

Freund, L. B. 1990. Dynamic Fracture Mechanics. New York: Cambridge University Press.

Fried, H., and K. Binder. 1991. J. Chem. Phys. 94:8349.

Friedman, A. 1992. Variational Principles and Free-Boundary Problems. New York: Wiley-Interscience.

Friedman, A., and B. Hu. 1992. The Stefan problem with kinetic condition at the free boundary. Ann. Scu. Norm. Sup. Pisa, Ser. IV 19:615–636

Friedman, A., J. Glimm, and J. Lavery. 1992a. The Mathematical and Computational Sciences in Emerging Manufacturing Technologies and Management Practices. Philadelphia: Society for Industrial and Applied Mathematics.

Friedman, A, B. Hu, and J. L. Velazquez. 1992b. A free-boundary problem modeling loop dislocation in crystals. Arch. Ration. Mech. Anal. 119:229–291.

Fuentes, Y. O., and S. Kim. 1992. Parallel computational microhydrodynamics: Communication scheduling strategies. AIChE J. 38:1059–1078.

Gage, M., and R. Hamilton. 1986. J. Differ. Geom. 23:285.

Gandhi, M. V., and B. S. Thompson. 1992. Smart Materials and Structures. New York: Van Nostrand Reinhold. 288 pp.

Gao, Z., and T. Mura. 1989. On the inversion of residual stresses from surface displacements. J. Appl. Mech. 56:508–513.

Gast, A. P., and C. F. Zukoski. 1990. Electrorheological fluids as colloidal suspensions. Adv. Colloid Interface Sci. 30:153–202.

Gerber, R. D. 1988. Exact solution of the proximity effect equation of a splitting method. J. Vac. Sci. Technol. B. 6:432–435.

Gibbs, H. M. 1985. Optical Bistability: Controlling Light with Light. New York: Academic Press.

Gibbs, J. W. 1876. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. III:108–248.

Gibbs, J. W. 1878. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. III:343–524.

Gibbs, J. W. 1961. The Scientific Papers of J. Willard Gibbs. H. A. Bumstead and R. G. Van Name, eds. New York: Dover. [Reprinted from 1906 edition.]

Gierasch, L M., and J. A. King, eds. 1990. Protein folding: Deciphering the Second half of the

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Genetic Code. Washington, D.C.: American Association for the Advancement of Science. 352 pp.

Godreche, C., ed. 1992. Solids far from equilibrium. New York: Cambridge University Press. 650 pp.

Gollub, J. P. 1991. An experimental assessment of continuum models of dendritic growth. Pp. 75–86 in Asymptotics Beyond All Orders. NATO ASI Series B, Vol. 284. H. Segur, S. Tanveer, and H. Levine, eds. New York: Plenum.

Gray, J. N., S. A. Gray, N. Nakagawa, and R. B. Thompson. 1989. P. 702 in Nondestructive Evaluation and Quality Control. Metals Handbook, Vol. 17. Materials Park, Ohio: ASM International. 750 pp.

Greengard, L., and V. Rokhlin. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73:325–348.

Grinfeld, M. A. 1993. The stress-driven instability in elastic crystals: mathematical models and physical manifestations. J. Nonlin. Sci. 3:1–49.

Gruber, E. E., and W. W. Mullins. 1967. J. Phys. Chem. Solids 28:875.

Gubernatis, J. E. 1978. P. 84 in Electrical Transport and Optical Properties of Inhomogeneous Media. J. C. Garland and D. B. Tanner, eds. New York: American Institute of Physics.

Gubernatis, J. E., M. Jarrell, R. N. Silver, and D. S. Sivia. 1991. Phys. Rev. B 44:6011.

Guggenheim, E. A. 1944. Proc. R. Soc. London, Ser. A 183:203, 213.

Gunton, J. D., M. San Miguel, and P. 5. Sahini. 1983. Phase Transitions and Critical Phenomena, Vol. 8. C. Domb and J. L. Lebowitz, eds. New York: Academic Press.

Guo, J., D. E. Ellis, E. E. Alp, and G. L. Goodman. 1990a. Polarized copper K-edge X-ray absorption spectra of YBa2Cu3O7-y and related compounds. Phys. Rev. B42:251.

Guo, J., D. E. Ellis, G. L. Goodman, E. E. Alp, L. Soderholm, and G. K. Shenoy. 1990b. Theoretical calculations on X-ray absorption spectra of copper in La2CuO4 and related compounds. Phys. Rev. B41 :82. [A review that may be useful to the nonspecialist.]

Hadziioannou, G., and A. Skoulious. 1982. Macromolecules 15:258.

Haftka, R., and R. Grandhi. Structural shape optimization--a survey. Comput. Methods Appl Mech. Eng. 57:91–106.

Hall, R. W. 1992. J. Chem. Phys. 97:6481.

Hall, R. W., and M. R. Prince. 1991. J. Chem. Phys. 95:5999.

Hansen, J. P., and I. R. McDonald. 1986. Theory of Simple Liquids. 2nd ed. New York: Academic Press.

Hardy, S. C., G. B. McFadden, S. R. Coriell, and R. F. Sekerka. 1991. Measurement and analysis of grain boundary grooving by volume diffusion. J. Cryst. Growth 114:467–480.

Harlen, O. G., J. M. Rallison, and M. D. Chilcott. 1990. J. Non-Newtonian Fluid Mech. 34:319–349.

Harnaby, N., M. F. Edwards, and A. W. Nienow. 1985. Mixing in the Process Industries. Boston: Butterworth.

Hartke, B., and E. A. Carter. 1992. J. Chem. Phys. 97:1992.

Harvey, S. C. 1989. Proteins 5:78.

Hasegawa, A., and F. Tappert. 1973. Appl. Phys. Lett. 23:142–144.

Hasegawa, H., H. Tanaka, K. Yamasaki, and T. Hashimoto. 1987. Macromolecules 20:1641.

Hashin, Z., and S. A. Strikman. 1963. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11:127–140.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Hawkes, J. 1971. Z. Wahrscheinlichkeitstheor. Verw. Geb. 19:90.

Hayes, B. 1993. The wheel of fortune. Am. Sci. 81:114–118.

Hays, S. E., and R. W. Hall. 1991. J. Phys. Chem. 95:8552.

Head, A. K., S. D. Howison, J. R. Ockendon, J. B. Titchener, and P. Wilmott. 1987. A continuum model for two-dimensional dislocation distributions. Philos. Mag. A 55:617–629.

Heitmann, D., and J. P. Kotthaus. 1993. The spectroscopy of quantum dot arrays. Phys. Today 46(6):56–65.

Helfand, E., S. M. Bhattacharjee, and G. H. Frederickson. 1989. J. Chem. Phys. 91:7200.

Herman, D. S., D. J. Kinning, E. L. Thomas, and L. J. Fetters. 1987. Macromolecules 20:2940.

Hermann, H., and U. Lorz. 1992. Mater. Sci. Forum 94–96:295.

Herring, C. 1951. Phys. Rev. 82:87.

Herring, C. 1953. Structure and Properties of Crystal Surfaces, Vol. 5. R. Gomer and C. S. Smith, eds. Chicago: University of Chicago Press.

Herrmann, H. J., and S. Roux, eds. 1990. Statistical Models for the Fracture of Disordered Media. Amsterdam: North-Holland.

Hess, W., and R. Klein. 1983. Generalized hydrodynamics of systems of Brownian particles. Adv. Phys. 32:173–283.

Hilsum, C., and E. P. Raynes, eds. 1983. Liquid Crystals: Their Physics, Chemistry and Applications. London: Royal Society.

Hirth, J. R., and L. Lothe. 1982. Theory of Dislocations. New York: McGraw-Hill.

Hoffend, Jr., T. R. 1993. Foundations of the Landau-Lifshitz model and related numerical algorithms for study of magnetization reversal in particulate recording media. In preparation.

Hohenberg, P., and W. Kohn. 1964. Phys. Rev. B 136:864.

Hong, K. M., and J. Noolandi. 1983. Macromolecules 16:1083.

Hortz, J., A Krough, and R. G. Palmer. 1991. Introduction to the Theory of Neural Computation. New York: Addison-Wesley.

Houck, D. L., ed. 1988. Thermal Spray: Advances in Coatings Technology. Proceedings of the National Thermal Spray Conference, Sept. 14–17, Orlando, florida. Materials Park, Ohio: ASM International. 426 pp.

Howison, S. D. 1990. Equilibrium of screw dislocations. Pp. 307–311 in Free Boundary Problems. Theory and Applications, Vol. I. K. H. Hoffmann and J. Sprekels, eds. Halsted Press. New York: Wiley.

Hu, Y., J. M. MacInnis, B. J. Cherayil, G. R. Fleming, K. F. Freed, and A. Perico. 1990. J. Chem. Phys. 93:822.

Hu, Y., G. R. fleming, K. F. Freed, and A. Perico. 1991. Chem. Phys. 158:395.

Huang, M. 1992. Meissner effects and constraints. In 1991 Lectures in Complex Systems. L. Nadel and D. Stein, eds. SFI Studies in the Sciences of Complexity, Proceedings, Vol. XV. Reading, Mass.: Addison Wesley.

Huang, S.-C., and M. E. Glicksman. 1981a. Fundamentals of dendritic solidification—I: Steady-state tip growth. Acta Metall. 29:701–715.

Huang, S.-C., and M. E. Glicksman. 1981b. Fundamentals of dendritic solidification—II: Development of sidebranch structure. Acta Metall. 29:717–734.

Hubbard, J., and J. F. Douglas. 1993. Phys. Rev. Lett. Submitted.

Huggins, M. L. 1941. J. Chem. Phys. 9:440.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Huggins, M. L. 1942. J. Phys. Chem. 46:151.

Huppert, H. 1990. The fluid mechanics of solidification. J. Fluid Mech. 212:209–240.

Hurle, D. T. J., and F. Jakeman. 1981. Introduction to the techniques of crystal growth. Physicochemical Hydrodynamics 2:237–244.

Ihm, J., A. Zunger, and M. L. Cohen. 1979. J. Phys. C 12:4409.

Institute of Mathematical Statistics. 1988. Cross-Disciplinary Research in the Statistical Sciences. Report of a Panel of the IMS. I. Olkin and J. Sacks, co-chairs. 62 pp. (Reprinted in Statistical Science 5(February):121–146, 1990.)


Jacoboni, C., and L. Reggiani. 1983. Rev. Mod. Phys. 44:645.

James, R., and D. Kinderlehrer. 1990. Frustration in ferromagnetic materials. Continuum Mech. Thermodyn. 2:215–239.

James, R., and D. Kinderlehrer. 1993. Theory of magnetostriction with applications to TbxDy1-xFe2. Philos. Mag. In press.

Jensen, R. 1991. Chaos 1:101 ff.

Joanny, J. F., and L. Leibler. 1978. J. Phys. (Paris) 39:951.

Johnson, W. C., and W. H. Muller. 1991. Acta Metall. Mater. 39:89.

Johnson, W. C., and P. W. Voorhees. 1988. Elastically-induced precipitate shape transitions in coherent solids. P. 87 in Non-Linear Phenomena in Materials Science II. G. Martin and L. P. Kubin, eds. Brookfield, Vt.: Ashgate. 600 pp.

Joint Policy Board for Mathematics (JPBM). 1994. Report from the Committee on Professional Recognition and Rewards. Washington, D.C.: JPBM. In preparation.

Jones, A. D. W. 1988. Scaling analysis of the flow of a low Prandtl number Czchochralski melt. J. Cryst. Growth 88:465–476.

Jones, V. F. R. 1985. Bull Am. Math. Soc. 12:103.

Joseph, D. D. 1990. Fluid Dynamics of Viscoelastic Liquids. New York: Springer-Verlag.

Journal of the Optical Society of America, Part B. 1988. Nonlinear dynamics of lasers. Vol. 5, No. 5. Special May issue.


Kac, M. 1974. Rocky Mountain J. Math. 4:511.

Kalika, D. S., D. W. Giles, and M. M. Denn. 1990. Shear and time-dependent rheology of a fully nematic thermotropic liquid crystalline polymer. J. Rheol. 34:139–154.

Karplus, M., and J. A. McCammon. 1983. Annu. Rev. Biochem. 53:263.

Kassir, M. K., and M. F. Chauprasert. 1974. J. Appl. Mech. 42:1019–1024.

Kausch, H. H. 1978. Polymer Fracture. New York: Springer-Verlag.

Kawasaki, A., and R. Watanabe. 1990. Pp. 197–202 in FGM '90: Proceedings of 1st International Symposium on Functionally Gradient Materials . M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota, eds. Functionally Gradient Materials Forum, Sendai, Japan.

Kawasaki, K., and T. Kawakatsu. 1990. Equilibrium morphology of block copolymer melts. Macromolecules 23:4006–4019.

Kerrihara, K., K. Sasaki, and M. Kawarada. 1990. In FGM '90: Proceedings of 1st International Symposium on Functionally Gradient Materials . M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota, eds. Functionally Gradient Materials Forum, Sendai, Japan.

Kessler, D., J. Koplik, and H. Levine. 1988. Adv. Phys. 37:255.

Keunings, R. 1989. Pp. 404–469 in Fundamentals of Computer Modeling of Polymer Processing. C. L. Tucker III, ed. Munich: Carl Hanser Verlag.

Keyfitz, B. L., and M. Shearer, eds. 1990.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Nonlinear Evolution Equations That Change Type. Institute for Mathematics and Its Applications, Vol. 27. New York: Springer-Verlag.

Khachaturyan, A. 1983. Theory of Structural Transformations in Solids. New York: Wiley.

Khan, F. S., and J. Q. Broughton. 1991. Phys. Rev. B 43:11754.

Kholodenko, A. 1989. J. Chem. Phys. 91:3774.

Kholodenko, A. 1991. Phys. Lett. A 159:437.

Kholodenko, A. 1992. J. Chem. Phys. 95:621; 96:700.

Kikuchi, R., and J. W. Cahn. 1980. Phys. Rev. B. 21:1893.

Kim, S., and S. J. Karrila. 1991. Microhydrodynamics: Principles and Selected Applications. Boston: Butterworth-Heinemann. 500 pp.

Kinderlehrer, D., and G. Stampacchia. 1980. An Introduction to Variational Inequalities and Their Applications. New York: Academic Press.

King, J. R. 1993. Asymptotic analysis of a model for the diffusion of dopant-defect pairs. In Semiconductors. J. Cole, W. M. Cunghran, B. White., F. Odeh, and P. Lloyd, eds. Institute for Mathematics and Its Applications. New York: Springer-Verlag. To appear.

Kléman, M. 1983. Points, Lines and Walls. New York: Wiley.

Kloucek, P., and M. Luskin. 1993. The computation of the dynamics of the martensitic transformation. Preprint 93-025. Minneapolis: University of Minnesota Army High Performance Computing Research Center.

Kobayashi, R. 1992. Three dimensional crystal growth. Pp. 67–69 in Computational Crystal Growers Workshop. J. E. Taylor, ed. Selected Lectures in Mathematics. Providence, R.I.: American Mathematical Society.

Kohn, R., and G. Strang. 1986. Optimal design and relaxation of variational problems I–Ill. Commun. Pure Appl. Math. 39:113–137, 139–182, 353–377.

Kohn, R., and S. Muller. 1992. Branching of twins near an austenite-twinned-martensite interface. Philos. Mag. A. In press.

Kohn, W., and L. J. Sham. 1965. Phys. Rev. 140:A1133.

Korsaris, K., and M. Muthukumar. 1991. Phys. Rev. Lett. 66:2211.

Kröner, E. 1958. Kontinuumstheorie der Versetzunger und Eigenspannungen. New York: Springer-Verlag.

Kroschwitz, J. I., ed. 1990. Encyclopedia of Polymer Science and Engineering. New York: Wiley.

Krumhansel, J. A., and R. J. Gooding. 1989. Phys. Rev. B 39:3047.

Kuharski, R. A., and P. J. Rossky. 1985. J. Chem. Phys. 82:5164.

Kuiken, H. K. 1990. Mathematical modeling of etching processes. Pp. 89–109 in Free Boundary Problems. Theory and Applications, Vol. I. K. H. Hoffmann and J. Sprekels, eds. Halsted Press. New York: Wiley.

Lacey, A. A. 1990. Tool design in electrochemical machining. Pp. 514–519 in Free Boundary Problems: Theory and Applications, Vol II . K. H. Hoffmann and J. Sprekels, eds. Halsted Press. New York: Wiley.

Lacey, A. A., and A. B. Taylor. 1983. IMA J. Appl. Math. 30:303–314.

Lakes, R. 1991. J. Mater. Sci. 26:2287.

Lam, L., and J. Prost, eds. 1991. Solitons in Liquid Crystals. New York: Springer-Verlag.

Landau, L. D., and E. M. Lifshitz. 1969. Statistical Mechanics. Ch. 14. New York: Pergamon.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Landauer, R. 1978. Electrical conductivity in inhomogeneous media. In Electrical Transport and Optical Properties of Inhomogeneous Media . J. C. Garland and D. B. Tanner, eds. AIP Conference Proceedings No. 40. Washington, D.C.: American Institute of Physics.

Landman, U., R. N. Barnett, and W. D. Luedtke. 1992. Philos. Trans. R. Soc. London, Ser. A 341:337.

Lange, F. F. 1989. Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72:3–15.

Langer, J. S. 1987. Lectures in the theory of pattern formation. P. 629 in Ghance and Matter. J. Souletie, J. Vannimenus, and R. Stora, eds. New York: Elsevier.

Langer, J. S. 1992. Issues and opportunities in materials research. Phys. Today (October):24–31.

Langlois, W. E. 1985. Buoyancy-driven flows in crystal-growth melts. Annu. Rev. Fluid Mech.17:191–215.

Larché, F. C., and J. W. Cahn. 1978. Thermochemical equilibrium of multiphase solids under stress. Acta Metall. 26:1579–1589.

Larché, F. C., and J. W. Cahn. 1992. Phase changes in a thin plate with non-local self-stress effects. Acta Metall. Mater. 40(5):947–955.

Larson, R. G. 1988. Constitutive Equations for Polymer Melts and Solutions. Boston: Butterworth. 304 pp.

Larson, R. G. 1992. Rheol. Acta. 31:213.

Lee, Y. S., and P. M. Duxbury. 1987. Phys. Rev. B36:5411.

Leibler, L. 1980. Macromolecules 13:1602.

Leo, P. H., and R. F. Sekerka. 1989. The effect of elastic fields on the morphological stability of a precipitate grown from solid solution. Acta Metall. 37:3139–3149.

LeSar, R., R. Najafahadi, and D. J. Srolovitz. 1989. Finite temperature defect properties for free energy minimization. Phys. Rev. Lett. 63:624.

Leslie, F. M. 1979. Adv. Liq. Cryst. 4:1.

Levy, M. 1991. Phys. Rev. A 43:4637.

Levy, T. 1983. Suspension of solids in a Newtonian fluid. J. Non-Newtonian Fluid Mech. 13:63–78.

Levy, T. 1985. Suspension de particules solides soumises á des couples. J. Méch. Théor. Appl. Special number:53–71.

Li, F. Z., and J. Pan. 1990a. Plane-strain crack-tip fields for pressure-sensitive dilatant materials. J. Appl. Mech. (Transactions of the ASME) 57:40–49.

Li, F. Z., and J. Pan. 1990b. Plane-stress crack-tip fields for pressure-sensitive dilatant materials. Eng. Fract. Mech. 35:1105–1116.

Li, Y. S., and P. M. Duxbury. 1987. Size and location of the largest current in a random resistor network. Phys. Rev. B36:5411.

Li, Y. S., and P. M. Duxbury. 1989. From moduli scaling to breakdown scaling: a moment spectrum analysis. Phys. Rev. B40:4889.

Lifshitz, I. M., and V. V. Slyozov. 1961. J. Phys. Chem. Solids 19 :35.

Lipkin, M. D. 1988. Physica A 150:18.

Lipscomb III, G. G., M. M. Denn, D. U. Hur, and D. V. Boger. 1988. The flow of fiber suspensions in complex geometries. J. Non-Newtonian Fluid Mech. 26:297–325.

Liu, C. T., ed. 1992. Shape-Memory Materials and Phenomena: Fundamental Aspects and Applications. Materials Research Symposium Proceedings, Vol. 246. Pittsburgh, Pa.: Materials Research Society.

Liu, Y. 1993. Axially symmetric jet flows arising from high speed fiber coating. Nonlin. Anal. To appear.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Lodge, T. P., N. A. Rothstein, and S. Prager. 1990. Adv. Chem. Phys. 79:1.

Loh, E. Y., J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar. 1990. Phys. Rev. B 41:9301.

Lorenz, E. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20 :130–141.

Lorenz, E. 1979. On the prevalence of aperiodicity in simple systems. Pp. 53–75 in Global Analysis. M. Grmela and J. Marsden, eds. Lecture Notes in Mathematics, Vol. 755. New York: Springer-Verlag.

Lorenz, E. 1984. Irregularity: a fundamental property of the atmosphere. Crafoord Prize Lecture presented at the Royal Swedish Academy of Sciences, Stockholm, Sept. 28, 1983. Tellus 36A:98–110.

Lovett, R. 1988. J. Chem. Phys. 88:7789.

Lovett, R., and F. H. Stillinger. 1991. J. Chem. Phys. 94:7353.

Luckhaus, S. 1990. Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. Eur. J. Appl. Math. 1:101–111.

Lurie, K., and A. Cherkaev. 1982. Regularization of optimal design problems for bars and plates I, II. J. Optim. Theory Appl. 37:499–521, 532–543.

Luskin, M. 1984. On the classification of some model equations for viscoelasticity. J. Non-Newtonian Fluid Mech. 16:3–11.

Luskin, M., and L. Ma. 1992. Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29:320–331.

Luskin, M., and T.-W. Pan. 1992. Nonplanar shear flows for nonaligning nematic liquid crystals. J. Non-Newtonian Fluid Mech. 42:369–384.

Mackay, A. L., and H. Terrones. 1991. Nature 355:762. (Also in T. Lenosky, X. Gonze, M. Teter, and V. Elser. 1992. Nature 355:333; also in D. Vanderbilt and J. Tersoff. 1992. Phys. Rev. Lett. 68:511.)

Maddox, J. 1993. Why microtubules grow and shrink. Nature 362(18 March):201.

Malkus, D. S., J. A. Nohel, and B. J. Plohr. 1991. Analysis of new phenomena in shear flow of non-Newtonian fluids. SIAM J. Appl. Math. 51:899–929.

Manneville, P. 1990. Dissipative Structures and Weak Turbulence. New York: Academic Press.

Maradudian, A. A., and A. E. Fein. 1962. Phys. Rev. 128:2589.

Marrucci, G., and P. L. Maffetone. 1990. Nematic phase of rodlike polymers, parts I and II. J. Rheol. 34:1217, 1231.

McCammon, J. A., and S. C. Harvey. 1989. Dynamics of Proteins and Nucleic Acids. New York: Cambridge University Press.

McGeough, J. A., and H. Rasmussen. 1990. A theoretical analysis of electrochemical arc machining. Pp. 532–549 in Free Boundary Problems: Theory and Applications, Vol. II. K. H. Hoffmann and J. Sprekels, eds. Halsted Press. New York: Wiley.

McMahan, A. K., J. F. Annett, and R. M. Martin. 1990. Phys. Rev. B 42:6268.

McMeeking, R., and A. G. Evans. 1982. Mechanisms of transformation toughening in brittle materials. J. Am. Ceram. Soc. 65:242–245.

McMullen, W. E. 1991. J. Chem. Phys. 95:8507.

McMullen, W. E., and K. F. Freed. 1990a. J. Chem. Phys. 92:1413.

McMullen, W. E., and K. F. Freed. 1990b. J. Chem. Phys. 93:9130.

Meirmanov, A. 1992. The Stefan Problem. Trs. from Russ. by N. Niezgodka and A. Crowley. Exposition in Math. Ser.: No. 3. Berlin: Walter de Gruyter. 245 pp.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Melenkevitz, J., and M. Muthukumar. 1991. Macromolecules 24:4199.

Mermin, N. D. 1979. The topological theory of defects in ordered media. Rev. Mod. Phys. 51:591–648.

Metois, J. J., and J. C. Heyraud. 1987. Surf. Sci. 180:647.

Milton, G. 1990. On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Commun. Pure Appl. Math. 43:63–125.

Milton, G. 1991. The field equation recursion method. Pp. 223–245 in Composite Media and Homogenization Theory. G. Dal Maso and G. Dell'Antonio, eds. Boston: Birkhauser.

Milton, G. W. 1981. Bounds on the electromagnetic, elastic and other properties of two-component composites. Phys. Rev. Lett. 46:542.

Milton, G. W. 1985. The coherent potential approximation is a realizable effective medium scheme. Commun. Math. Phys. 99:463.

Milton, G. W. 1992. Composite materials with Poisson's ratios close to-1. J. Mech. Phys. Solids 40:1105.

Milton, G. W., and R. V. Kohn. 1988. Variational hounds on the effective tensors of anisotropic composites. J. Mech. Phys. Solids 36:597–629.

Monovoukas, Y., and A. P. Gast. 1989. The experimental phase diagram of charged colloidal particles. J. Colloid Interface Sci. 128:533–548.

Morgan, F. 1988. Geometric Measure Theory: A Beginner's Guide. New York: Academic Press. 153 pp.

Mori, H. 1965. Prog. Theor. Phys. 33:423.

Morinaga, M., N. Yukawa, H. Adachi, and T. Mura. 1987. Electronic stability effect on local strain in martensite. J. Phys. F 17:2147–2162.

Morinaga, M., N. Yukawa, H. Adachi, and T. Mura. 1988. Electronic state of interstitial atoms (C, N, O) in FCC Fe. J. Phys. F 18:923–934.

Mullins, W. W. 1956. Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27:900.

Mullins, W. W. 1957. Theory of thermal grooving. J. Appl. Phys. 28 :333.

Mullins, W. W. 1958. The effect of thermal grooving on grain boundary motion. Acta Metall. 6:414.

Mullins, W. W. 1959. Flattening of a nearly solid surface due to capillarity. J. Appl. P hys. 30:77.

Mullins, W. W. 1963. Solid surface morphologies governed by capillarity. P. 17 in Metal Surfaces: Structure, Energetics and Kinetics. W. D. Robertson and N. A. Gjostein, eds. Materials Park, Ohio: ASM International.

Mullins, W. W., and R. F. Sekerka. 1963. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34 :323.

Mullins, W. W., and R. F. Sckerka. 1964. The stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35:444.

Mullins, W. W., and J. Vinals. 1989. Self-similarity and growth kinetics driven by surface free energy reduction. Acta Metall. 37:991.

Mura, T. 1982. Micromechanics of Defects in Solids. 2nd ed. The Hague: Martinus Nijhoff.

Mura, T. 1987. The eigenstrains method applied to fracture and fatigue mechanics. Pp. 145–152 in Role of Fracture Mechanics in Modern Technology. G. C. Sih, H. Nishitani, and T. Ishihara, eds. Amsterdam: North-Holland.

Mura, T., and Y. Nakasone. 1989. A theory of fatigue crack initiation in solids. J. Appl. Mech. 57:1–6.

Mura, T., and Z. Gao. 1989. Inverse problems in plasticity. Pp. 573–576 in Advances in Plasticity 1989. A. S. Khan and M. Tokuda, eds. Tarrytown,

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

N.Y.

: Pergamon. 760 pp.

Mura, T., and Z. Gao. 1992. Inverse method in micromechanics of defects in solids. Pp. 1157–1167 in Residual Stresses III. Proceedings of the 3rd International Conference on Residual Stresses, Tokushima, Japan. Science and Technology, Vol. 2. H. Fujiwara, T. Abe, and K. Tanaka, eds. New York: Elsevier Applied Science.

Murat, F., and L. Tartar. 1985. Calcul des variations et homogeneisation. Pp. 319–369 in Les Methodes de l'Homogeneisation: Theorie et Applications en Physique. Eyrolles.

Nabarro, F. R. N. 1967. Theory of Crystal Dislocations. New York: Oxford University Press.

Nanavati, C., and J. M. Fernandez. 1993. The secretory granule matrix: a fast-acting smart polymer. Science 259(12 Feb.):963–965.

National Research Council. 1986. Physics Through the 1990s: Atomic, Molecular, and Optical Physics. Board on Physics and Astronomy. Washington, D.C.: National Academy Press. 184 pp.

National Research Council. 1989. Materials Science and Engineering for the 1990s. Board on Physics and Astronomy, and National Materials Advisory Board. Washington, D.C.: National Academy Press. 320 pp.

National Research Council. 1990. Interdisciplinary Research: Promoting Collaboration Between the Life Sciences and Medicine and the Physical Sciences and Engineering. Committee on Promoting Research Collaboration. Washington, D.C.: National Academy Press. 51 pp.

National Research Council. 1991a. Applications of the Mathematical Sciences to Materials Science. Board on Mathematical Sciences. Washington, D.C.: National Academy Press. 36 pp.

National Research Council. 1991b. Moving Beyond Myths: Revitalizing Undergraduate Mathematics. Board on Mathematical Sciences, and Mathematical Sciences Education Board. Washington, D.C.: National Academy Press. 75 pp.

National Research Council. 1991c. Research Briefing on Selected Opportunities in Atomic, Molecular, and Optical Sciences. Board on Physics and Astronomy. Washington, D.C.: National Academy Press. 31 pp.

National Research Council. 1991d. Spatial Statistics and Digital Image Analysis. Panel on Spatial Statistics and Image Processing. Board on Mathematical Sciences. Washington, D.C.: National Academy Press. 244 pp.

National Research Council. 1992. Mathematical Opportunities in Nonlinear Optics. Board on Mathematical Sciences. Washington, D.C.: National Academy Press. 63 pp.

National Research Council. 1993. Statistics and Physical Oceanography. Committee on Applied and Theoretical Statistics. Washington, D.C.: National Academy Press. 72 pp.

National Research Council. 1994. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Board on Mathematical Sciences. Washington, D.C.: National Academy Press. In preparation.

National Science Foundation (NSF). 1992. NSF Science and Technology Centers. Publication NSF 92–104. Washington, D.C.: NSF. 67 pp.

National Science Foundation (NSF). 1993. Knowledge Transfer Through the National Science Foundation's Science and Technology Centers. Office of Science and Technology Infrastructure. Washington, D.C.: NSF. 16 pp.

Nemirovsky, A. M., M. G. Bawendi, and K. F. Freed. 1987. J. Chem. Phys. 87:7272.

Nemirovsky, A. M., J. Dudowicz, and K. F. Freed. 1992a. Phys. Rev. A 45:7111.

Nemirovsky, A. M., K. F. Freed, T. Ishinabe, and J. F. Douglas. 1992b. J. Stat. Phys. 67:1083.

Nichols, F. A. 1965. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J. Appl. Phys. 36:1826.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Niino, M., and S. Maeda. 1990. Iron Steel Inst. Japan Int. 30:699–703.

Nozieres, P. 1989. Growth and shape of crystals. Lectures given at Beg-Rohu, Brittany, Summer School. Mimeographed.

Nozieres, P. 1991. Pp. 1 + in Solids Far From Equilibrium. C. Godreche, ed. New York: Cambridge University Press.

Ohta, T., and K. Kawasaki. 1986. Macromolecules 19:2621.

Olszak, W., ed. 1958. Nonhomogeneity in Elasticity and Plasticity. Proceedings IUTAM Symposium, Warsaw. London: Pergamon.

O'Reilly, J. M., and M. Goldstein, eds. 1981. Structure and Mobility in Molecular and Atomic Glasses. Ann. N. Y. Acad. Sci., Vol. 371.

Osher, S., and J. Sethian. 1988. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79:12–49.

Otsuka, K., and K. Shimizu, eds. 1989. Shape Memory Materials. MRS International Symposium Proceedings, Vol. 9. Pittsburgh, Pa.: Materials Research Society. 641 pp.

Ottino, J. M. 1989. The Kinematics of Mixing: Stretching Chaos, and Transport. Cambridge Texts in Applied Mathematics—Ser. No. 4. New York: Cambridge University Press. 375 pp.

Ottino, J. M. 1990. Mixing, chaotic advection, and turbulence. Pp. 207–253 in Annual Review of Fluid Mechanics, Vol. 22. J. L. Lumley et al., eds. Palo Alto, Calif.: Annual Reviews, Inc.

Ottino, J. M., F. J. Muzzio, M. Tjahjadi, J. G. Franjione, S. C. Jana, H. A. Kusch. 1992. Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes. Science 257:754–760.


Pantelides, S. T. 1992. What is materials physics, anyway? Phys. Today 45(9):67–69.

Papanicoloau, G., and S. Varadhan. 1982. Boundary value problems with rapidly oscillating coefficients. Pp. 835–873 in Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields. Amsterdam: North-Holland.

Parisi, G. 1988. Statistical Field Theory. Ch. 19. New York: Addison-Wesley.

Pastor, R., and M. Karplus. 1988. J. Phys. Chem. 92:2636.

Payne, M. C., J. D. Joannopoulos, D. C. Allan, M. P. Teeter, and D. H. Vanderbilt. 1986. Phys. Rev. Lett. 56:2656.

Payne, M. C., M. P. Teeter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. 1992. Rev. Mod. Phys. 64:1045.

Pearson, J. R. A. 1985. Mechanics of Polymer Processing. New York: Elsevier Applied Science.

Pearson, J. R. A., and S. M. Richardson, eds. 1983. Computational Analysis of Polymer Processing. New York: Elsevier Applied Science.

Pego, R. L. 1989. Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. London, Ser. A 422:261–278.

Pelce, P., ed. 1988. Dynamics of Curved Fronts. Perspectives in Physics Series . New York: Academic Press. 450 pp.

Peng, J. P., D. Chidambarrao, and G. R. Srinivasan. 1991. Pp. 772 + in Process Physics and Modeling in Semiconductor Technology. G. R. Srinivasan, J. D. Plummer, and S. T. Pantelides, eds. Pennington, N.J.: Electrochemical Society.

Perico, A., R. Pratolongo, K. F. Freed, R. W. Pastor, and A. Szabo. 1993. J. Chem. Phys. 98:546.

Petrie, C. J. S., and M. M. Denn. 1976. Instabilities in polymer processing. AIChE J. 22:209.

Phillips, J. C. 1982. The physics of glass. Phys. Today 35(2):27–33.

Pironneau, O. 1984. Optimal Shape Design for

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Elliptic Systems. New York: Springer-Verlag.

Pismen, L. M., and B. Y. Rubinstein. 1992. Motion of interacting point defects in nematics. Phys. Rev. Lett. 69:96–99.

Poupaud, F. 1993. Boundary value problems in semiconductors for stationary Vlasov-Maxwell-Boltzmann equation. In Semiconductors. J. Cole, W. M. Cunghran, B. White., F. Odeh, and P. Lloyd, eds. Institute for Mathematics and Its Applications. New York: Springer-Verlag. To appear.

Power, H., and G. Miranda. 1987. Second kind integral equation formulation of Stokes' flow past a particle of arbitrary shape. SIAM J. Appl. Math. 47:689–698.

Psaras, P. A., and H. D. Langford, eds. 1987. Advancing Materials Research. Washington, D.C.: National Academy Press.

Qin, S., H. Fan, and T. Mura. 1991. Microvoid nucleation at the interface between a thin film and a substrate in fatigue. J. Appl. Phys. 70(3):1405–1411.


Racz, L. M., and J. Szekely. 1993a. An alternative method for determining wettability of components with dissimilar surfaces. J. Electron. Packag. Submitted.

Racz, L. M., and J. Szekely. 1993b. Determination of equilibrium shapes and optimal volume of solder droplets in the assembly of surface mounted integrated circuits . ISIJ International 33(2):336–342.

Racz, L. M., and J. Szekely. 1993c. Solder volume estimation. In Handbook of Fine Pitch Surface Mount Technology. J. H. Lau, ed. New York: Van Nostrand Reinhold. In press.

Racz, L. M., J. Szekely, and K. A. Brakke. 1993. A general statement of the problem and description of a proposed method of calculation for some meniscus problems in materials processing. ISIJ International 33(2):328–335.

Radler, O. M. J., J. B. Cohen, G. P. Sykora, T. O. Mason, D. E. Ellis, and J. Faber, Jr. 1992. The defect structure of Mn1-x. J. Phys. Chem. Solids 53: 141.

Raj, R., and S. L. Sass, eds. 1988. International Interface on Science and Engineering, 1987. J Phys. (Paris) 49:Colloq. C-5.

Rallison, J., and E. J. Hinch. 1988. J. Non-Newtonian Fluid Mech. 29:37–55.

Rayleigh, J. W. S. 1892. Philos. Mag. 34:481. [Also, 1903. Scientific Papers of Lord Rayleigh, Glasgow: Cambridge University Press. 4:19.]

Reitich, F. 1991. Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions. Numer. Math. 59:179–216.

Renardy, M., W. J. Hrusa, and J. A. Nohel. 1987. Mathematical Problems in Viscoelasticity. Monographs and Surveys in Pure and Applied Mathematics, Vol. 35. New York: Longman Scientific, and Wiley. 320 pp.

Rey, A. 1991. Orientational transition in radial flow of a nematic liquid. J. Non-Newtonian Fluid Mech. 40:177–200.

Rivier, N. 1985. Philos. Mag. B 52:795.

Roe, R. J. 1986. Macromolecules 19:728.

Rogers, Craig, A., ed. 1989. Smart Materials: Structures and Mathematical Issues. Selected papers from the U.S. Army Research Office September 1988 workshop. Lancaster, Pa.: Technomic. 244 pp.

Roitburd, A. 1978. Martensitic transformation as a typical phase transformation in solids. Pp. 317–390 in Solid State Physics, Vol. 33. N. Ehrehreigh et al., eds. New York: Academic Press.

Roosen, A. 1993. Ph.D. dissertation. New Brunswick, N.J.: Rutgers University. January.

Roosen, A., and J. E. Taylor. 1992. Simulation of crystal growth with facetted interfaces. Pp. 25–36 in Interface Dynamics and Growth . Materials Research Society Symposium Proceedings, Vol.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

237. Pittsburgh, Pa.: MRS.

Rorris, E., R. R. O'Brien, F. F. Morehead, R. F. Lever, J. P. Peng, and G. R. Srinivasan. 1991. Pp. 703 ff. in Proceedings of the 2nd International Symposium on Process Physics and Modeling in Semiconductor Technology. G. R. Srinivasan, J. D. Plummer, and S. T. Pantelides, eds. Pennington, N.J.: Electrochemical Society.

Rosedale, J. H., and F. S. Bates. 1990. J. Chem. Phys. 23:2329.

Rossky, P. J., and J. Schnitker. 1988. J. Phys. Chem. 92:4277.

Rubenstein, L. I. 1971. Stefan Problem. Trs. from Russ. by A. Solomon. Translations of Mathematical Monographs: Vol. 27. Providence, R.I.: American Mathematical Society. 419 pp.

Rudan, M., and F. Odeh. 1986. Compel 5:149.

Russel, W. B. 1992. Dynamics of concentrated colloidal dispersions: Statistical mechanical approaches. Chapter 17 in Particulate Two-Phase Flow. M. C. Roco, ed. Stoneham, Mass.: Butterworth-Heinemann.

Russel, W. B., D. A. Savillc, and W. R. Schowalter. 1990. Colloidal Dispersions. New York: Cambridge University Press. 528 pp.

Sancez-Palencia, E. 1985. Current problems in high concentration suspensions. J. Méch. Théor. Appl. Special number:21–51.

Sancez-Palencia, E., ed. 1987. Homogenization Techniques for Composite Media. Lecture Notes in Physics, Vol. 272. Ch. 4. New York: Springer-Verlag.

Sasai, M., and P. G. Wolynes. 1990. Phys. Rev. Lett. 65:2740.

Sato, A., Y. Watanabe, and T. Mura. 1988. Octahedral defects in a b.c.c. lattice examined by lattice theory. J. Phys. Chem. Solids 49:529–540.

Schaefer, M., and C. Froemmel. 1990. J. Molec. Biol. 216:1045.

Scheutjens, J. M. H. M., and G. L. Fleer. 1979. J. Phys. Chem. 83:1619.

Scheutjens, J. M. H. M., and G. L. Fleer. 1985. Macromolecules 18:1882.

Schiffer, M. 1954. Bull. Am. Math. Soc. 60:303.

Schiffer, S., and G. Szego. 1949. Trans. Am. Math. Soc. 67:130.

Schmeiser, C., and A. Unterreiter. 1993. The derivation of analytic device models by asymptotic methods. In Semiconductors. J. Cole, W. M. Cunghran, B. White., F. Odeh, and P. Lloyd, eds. Institute for Mathematics and Its Applications. New York: Springer-Verlag. To appear.

Schmidt, K. E., and M. Kalos. 1984. Pp. 125–143 in Applications of Monte Carlo Methods. K. Binder, ed. New York: Springer-Verlag.

Schwarz, H. A. 1890. Gesammelte Mathematische Abhandlungen. Berlin: Springer.

Schweizer, K. S. 1989. J. Chem. Phys. 91:5802–5822.

Schweizer, K. S., and J. G. Curro. 1990. Chem. Phys. 149:105.

Segur, H., S. Tanveer, and H. Levine, cds. 1992. Asymptotics Beyond All Orders. NATO ASI Series B, Physics. Vol. 284. New York: Plenum Press. 388 pp.

Semenovskaya, S., and A. Khachaturyan. 1992. Structural transformations in nonstoichiometric YBaCuO. Phys. Rev. B. In press.

Senechal, M., and J. Taylor. 1990. Quasicrystals: the view from Les Houches. Math. Intell. 12:54–63.

Sethian, J., and J. Strain. 1991. Crystal growth and dendritic solidification. J. Comput. Phys. 98:231–253.

Shaw, J. G., and M. Hack. 1988. An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 64:4562–4566.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Shaw, J. G., R. G. LeComber, and M. Williams. 1991. Density-of-states and transient simulations of amorphous-silicon devices. J. Non-Cryst. Solids 137 and 138:1233–1236.

Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn. 1984. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53:1951–1954.

Shiau, F. Y., Y. Zuo, X. Y. Zeng, J. C. Lin, and Y. A. Chang. 1988. Pp. 171–176 in Adhesion in Solids. Materials Research Society Symposium Proceedings, Vol. 119. D. M. Mattox, J. E. E. Baglin, R. J. Gottshall, and C. D. Batich, eds. Pittsburgh, Pa.: MRS.

Shimoda, K. 1986. Introduction to Laser Physics, 2nd ed. Springer Series on Optical Sciences 44. New York: Springer-Verlag.

Sigma Xi, The Scientific Research Society. 1988. Removing the Boundaries: Perspectives on Cross-Disciplinary Research. New Haven, Conn.: Sigma Xi. 88 pp.

Silberberg, Y., and I. Bar-Joseph. 1984. J. Opt. Soc. Am. B 1:662.

Simo, J. C., and M. Ortiz 1985. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic equations. Comput. Methods Appl. Mech. Eng. 49:221–245.

Sivia, D. S., and C. J. Carlile. 1992. J. Chem. Phys. 96:170.

Sivia, D. S., R. N. Sivia, and R. Pynn. 1990. Nucl. Instru. Methods A287:538.

Sivia, D. S., W. A. Hamilton, and G. S. Smith. 1991. Physica B 173 :121.

Smith, J. R., and D. I. Srolovitz. 1992. Model. Simul. Mater. Sci. Eng. 1:101.

Spencer, B. J., P. W. Voorhees, S. H. Davis, and G. B. McFadden. 1992. The effect of compositionally generated elastic stresses on morphological stability during directional solidification. Acta Metall. Mater. 40(7):1599–1616. [Contains many references on crystal growth, morphological stability, and other subjects.]

Spitzer, F. 1964. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3:110.

Srolovitz, D. J. 1989. On the instability of surfaces of stressed solids. Acta Metall. 37:621–625.

Stillinger, F. H., and T. A. Weber. 1987. J. Phys. Chem. 91:4899–4907.

Stone, A. D., and Bruus, H. 1993. Chaos and fluctuations in quantum dots. Physica B 189(1–4):43–56.

Stroud, D., and P. M. Hui. 1988. Nonlinear susceptibilities of granular matter. Phys. Rev. B37:8719-8724.

Sumaratna, N., and T. C. T. Ting. 1986. Three-dimensional stress singularities in anisotropic materials and composites. Int. J. Eng. Sci. 24:1115–1134.

Suzuki, K., and N. Kikuchi. 1991. A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93:291–318.

Swendsen, R. H., and J. S. Wang. 1987. Phys. Rev. Lett. 58:86.

Szekely, J. 1990. On some free and moving boundary problems in materials processing. Pp. 222–242 in Free Boundary Problems: Theory and Applications, Vol. I. K. H. Hoffmann and J. Sprekels, eds. Halsted Press. New York: Wiley.

Szekely, J. 1993. A better recipe for making materials. New Scientist 139(3 July):34–37.

Tang, H., and K. F. Freed. 1991a. J. Chem. Phys. 94:1572.

Tang, H., and K. F. Freed. 1991b. J. Chem. Phys. 94:6307.

Tang, H., and K. F. Freed. 1991c. J. Chem. Phys. 94:7554.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Tang, H., and K. F. Freed. 1991d. Macromolecules 24:958.

Tang, H., and K. F. Freed. 1992. J. Chem. Phys. 96:8621.

Tartar, L. 1985. Estimations fines des coefficients homogeneises. P. 168 in Ennio DeGiorgi's Colloquium. P. Kree, ed. Research Notes in Mathematics, Vol. 125. London: Pitman Press.

Tartar, L. 1990. H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinburgh, Sect. A 115:193.

Tayler, A. B., and J. R. King. 1990. Free boundaries in semiconductor fabrication. Pp. 243–259 in Free Boundary Problems: Theory and Applications, Vol. I. K. H. Hoffmann and J. Sprekels, eds. Halsted Press. New York: Wiley.

Taylor, J. E. 1992. Mean curvature and weighted mean curvature. Acta Metall. Mater. 40(7):1475–1485.

Taylor, J., ed. 1993. Computational Crystal Growers Workshop. Selected Lectures in Mathematics. Providence, R.I.: American Mathematical Society.

Taylor, J. E., J. W. Cahn, and C. A. Handwerker. 1992. Geometric models of crystal growth. Acta Metall. Mater. 40(7):1443–1474.

Taylor, S. J., and J. G. Wenderl. 1966. Z. Wahrscheinlichkeitstheor. Verw. Geb. 6:170.

Tegart, J. 1991. Three-dimensional fluid interfaces in cylindrical containers. American Institute of Aeronautics and Astronautics paper AIAA-91-2174, presented at AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, Calif., June 24–26, 1991. Denver, Cob.: Martin Marietta Astronautics .

Thirumalai, D. 1992. Theor. Chim. Acta 82:407.

Thomas, E. L., D. M. Anderson, C. S. Henkee, and E. Hoffman. 1988. Periodic area-minimizing surfaces in block copolymers. Nature 334:598–601.

Thomson, R. 1983. P. 1487 in Physical Metallurgy. R. W. Cahn and P. Haasen, eds. Amsterdam: North-Holland.

Torquato, S. 1990. Microstructure and effective properties of random media. P. 323 in Mathematics of Random Media. Lectures in Applied Mathematics 27. W. Kohler and B. White, eds. Providence, R.I.: American Mathematical Society. 499 pp.

Torquato, S. 1991. Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev. 44:37–76.

Travis, J. 1993. Unexpected intelligence turns up in a cellular gel. Science 259(12 Feb.):893–894.

Trillo, S., S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton, and G. H. Stegeman. 1986. Appl. Phys. Lett. 49:1224.

Tseng, H. H., M. Orbowski, P. J. Tobin, and R. L. Hance. 1992. Fluorine diffusion on a polysilicon grain boundary network in relation to boron penetration from p+ gates. IEEE Electron Device Letters 13:14–16.

Tsoo, C., E. A. Estrin, and S. I. Singer. 1990. J. Chem. Phys. 93:7187.

Tsoo, C., E. A. Estrin, and S. J. Singer. 1992. J. Chem. Phys. 96:7977.

Tucker III, C. L., ed. 1989. Fundamentals of Computer Modelling for Polymer Processing. Munich: Hanser.

Underwood, A. 1993. Constructing Areas to Minimal Surfaces from Polyhedral Data. Ph.D. dissertation. Princeton University.

Underwood, E. E. 1970. Quantitative Stereology. Reading, Mass.: Addison-Wesley.


Varley, E., and B. A. Seymour. 1988. Stud. Appl. Math. 78:183–225.

Vasilopoulos, D. 1988. On the determination of

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

higher order terms of singular elastic stress fields near corners. Numer. Math. 53:51–95.

Venable, R., and R. Pastor. 1988. Biopolymers 27:1001.

Venables, J. A. 1992. In Microstructural Evolution of Thin Films. H. A. Atwater and C. Thompson, eds. New York: Academic Press.

Venkataraman, G., Y. W. Chung, and T. Mura. 1991. Application of minimum energy formalism in a multiple slip band model for fatigue, II: Crack nucleation and derivation of a generalized Coffin-Manson law. Acta. Metall. Mater. 11:2631–2638.

Villain, J. 1991. J. Phys. I (Paris) 1:19.

Villain, J., A. Pimpinelli, and D. Wolf. 1992. Commun. Condensed Matter Phys. In press.

Visintin, A. 1985. On Landau-Lifshitz's equations for ferromagnetism. Jpn. J. Appl. Math. 2:69–84.

Vitek, V., and D. Srolovitz, eds. 1989. Atomistic Simulation of Materials—Beyond Pair Potentials. New York: Plenum Press.

Voorhees, P. W. 1985. The theory of Ostwald ripening. J. Stat. Phys. 38:231–252.

Voorhees, P. W. 1992. Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 22. To appear.

Voorhees, P. W., and R. J. Schaefer. 1987. In situ observation of particle motion and diffusional interactions during coarsening. Acta Metall. 35:327–339.

Wallace, A. D. 1985. Thermoelastic-plastic flow in solids. Report No. LA-10119. Los Alamos, New Mex.: Los Alamos National Laboratory.

Ward, M. J., L. Reyna, and F. Odeh. 1993. Some examples of singular perturbation problems in device modeling. In Semiconductors. J. Cole, W. M. Cunghran, B. White., F. Odeh, and P. Lloyd, eds. Institute for Mathematics and Its Applications. New York: Springer-Verlag. To appear.

Warner, M., and X. Wang. 1992. Macromolecules 25:445.

Watanabe, T. 1992. Mater. Sci. Forum 94–96:209.

Watanabe, Y., A. Sato, and T. Mura. 1989. Growth of a nitrogen defect cluster in a BCC lattice examined by a lattice theory. J. Phys. Chem. Solids 50(9):957–961.

Watt, J. P., G. F. Davies, and R. J. O'Connell. 1976. The elastic properties of composite materials. Rev. Geophys. Space Phys. 14:541.

Weaire, D., and N. Rivier. 1984. Contemp. Physics 25:59.

Weierstrass, K. 1866. Ntersuchungen ber die flachen, deren mittlere Krummung berall gleich null ist. Monatsber. Dtsch. Akad. Wiss. Berlin 612–625.

Weinan, E. 1992. Homogenization of linear and nonlinear transport equations. Commun. Pure Appl. Math. 45:301–326.

Welch, W. J., and J. Sacks. 1991. A system for quality improvements via computer experiments . Commun. Stat., Part A 20:477–495.

Wertheim, M. S. 1988. J. Chem. Phys. 88:1145.

Wheeler, A. A., W. J. Boettinger, and G. B. McFadden. 1992. A phase field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45:7424–7439.

Wheeler, J. C., and B. Widom. 1968. J. Am. Chem. Soc. 90:3064.

Widom, B., K. A. Dawson, and M. D. Lipkin. 1988. J. Chem. Phys. 88 :5149.

Willemsen, M. F. C., A. E. T. Kuipev, A. N. Reader, R. Hokke, and J. C. Barbour. 1988. In situ investigation of TiN formation on top of TiSi2. J. Vac. Sci. Technol. B 6:53–61.

Williams, E. D., and N. C. Bartelt. 1991. Science 251:393.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×

Willis, J. 1981. Variational and related methods for the overall properties of composite materials. Pp. 2–78 in Advances in Applied Mechanics, Vol. 21. C. S. Yih, ed. New York: Academic Press.

Wilson, K. G. 1975. Rev. Mod. Phys. 47:773.

Winful, H. G., and G. D. Cooperman. 1982. Appl. Phys. Lett. 40:298.

Wolff, U. 1989. Phys. Rev. Lett. 62:361.

Wolfram, S. 1983. Rev. Mod. Phys. 55:601.

Wortis, M. 1988. P. 367 in Chemistry and Physics of Solid Surfaces VII. R. Vanselow and R. F. Howe, eds. Springer Series in Chemical Physics, Vol. 10. New York: Springer-Verlag. 630 pp.

Wu, D. T. 1987. Modelling and simulation in the coatings industry. Chemtech. (January):26–28.

Yamanouchi, M. M. Koizumi, T. Hirai, and I. Shiota, eds. 1990. FGM '90: Proceedings of the 1st International Symposium on Functionally Gradient Materials. Functionally Gradient Materials Forum, Sendai, Japan.

Yethiraj, A., and K. S. Schweizer. 1992. J. Chem. Phys. 97:1455.

Yoder, L. 1975. Ann. Probab. 3:169.

Yu, C. S., and D. K. Shetty. 1989. Transformation zone shape, size, and crack-growth-resistance (R-curve) behavior of ceria-partially-stabilized zirconia polycrystals. J. Am. Ceram. Soc. 72:921–928.


Zabusky, N. J., and M. D. Kruskal. 1965. Phys. Rev. Lett. 15:240–243.

Zakharov, V. E., and A. B. Shabat. 1972. Sov. Phys. JETP (Engl. Transl.) 34:62–69.

Zhikov, V., S. Kozlov, O. Oleinik, and K. Ngoan. 1979. Averaging and G-convergence of differential operators. Russ. Math. Suv. 34(5):69–147.

Zhu, X., and S. G. Louie. 1991. Phys. Rev. B 43:14142.

Zia, R. K. P., J. E. Avron, and J. E. Taylor. 1988. The Summertop construction: crystals in corners. J. Stat. Phys. 50:727–736.

Zwanzig, R. 1960. J. Chem. Phys. 33:1338.

Zwanzig, R. 1961. Phys. Rev. 124:983.

Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
This page in the original is blank.
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 103
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 104
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 105
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 106
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 107
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 108
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 109
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 110
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 111
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 112
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 113
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 114
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 115
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 116
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 117
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 118
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 119
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 120
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 121
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 122
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 123
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 124
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 125
Suggested Citation:"BIBLIOGRAPHY." National Research Council. 1993. Mathematical Research in Materials Science: Opportunities and Perspectives. Washington, DC: The National Academies Press. doi: 10.17226/2206.
×
Page 126
Next: APPENDIX »
Mathematical Research in Materials Science: Opportunities and Perspectives Get This Book
×
Buy Paperback | $45.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This book describes fruitful past collaborations between the mathematical and materials sciences and indicates future challenges. It seeks both to encourage mathematical sciences research that will complement vital research in materials science and to raise awareness of the value of quantitative methods. The volume encourages both communities to increase cross-disciplinary collaborations, emphasizing that each has much to gain from such an increase, and it presents recommendations for facilitating such work.

This book is written for both mathematical and materials science researchers interested in advancing research at this interface; for federal and state agency representatives interested in encouraging such collaborations; and for anyone wanting information on how such cross-disciplinary, collaborative efforts can be accomplished successfully.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!