National Academies Press: OpenBook

Effects of Past Global Change on Life (1995)

Chapter: OXYGEN ISOTOPIC RECORDS OF LOW LATITUDE TEMPERATURES

« Previous: INTRODUCTION
Suggested Citation:"OXYGEN ISOTOPIC RECORDS OF LOW LATITUDE TEMPERATURES." National Research Council. 1995. Effects of Past Global Change on Life. Washington, DC: The National Academies Press. doi: 10.17226/4762.
×
Page 109

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

TROPICAL CLIMATE STABILITY AND IMPLICATIONS FOR THE DISTRIBUTION OF LIFE 109 simple physical arguments involving changes in evaporative cooling with warming (Newell et al., 1978; Newell and Dopplick, 1979) and questions on the mechanisms of tropical temperature change (e.g., Horrell, 1990) have also been utilized to support the notion of tropical temperature stability. However, a number of more comprehensive model experiments suggest that variations within a limited, but significant, range cannot be ruled out (Washington and Meehl, 1984; Manabe and Bryan, 1985; Hansen et al., 1988; Schlesinger, 1989). In combination, the isotopic data and the model studies support the hypothesis that past climate changes should have had a substantial impact on the character and distribution of life within the tropics. The climate stability of the tropics and its implications for the distribution and character of life are addressed here by (1) consideration of the oxygen isotopic records of low latitude temperature variations; (2) discussion of the physical arguments for temperature stability within the tropics; (3) examination of climate model-derived tropical temperatures; (4) examination of model evidence for tropical salinity differences between different time periods in Earth history; (5) consideration of the climate tolerances of tropical organisms; and (6) consideration of a mid-Cretaceous case study in which simulated climate changes in the tropics can be compared with the biological record. The primary conclusions are that (1) throughout Earth history there has been significant variation in tropical temperature (3 to 5°C differences from the present day) and salinity (several parts per thousand); (2) these variations are large enough to have substantial impact on life; and (3) greater study of the geologic record within the tropics will yield important insights into climate sensitivity and into the biologic response to global change. OXYGEN ISOTOPIC RECORDS OF LOW LATITUDE TEMPERATURES The oxygen isotope method of determining paleotemperatures has been widely utilized to study the Cenozoic and the Cretaceous (Savin, 1977). These paleotemperature determinations for the tropics suggest substantial variation. Isotopic measurements on apparently unaltered planktonic foraminifera from the Shatsky Rise, near the equator during the mid-Cretaceous, yield temperature values of 25 to 27°C (Douglas and Savin, 1975), if an ice-free Earth is assumed. These values can be taken at face value and used to indicate little change in tropical temperatures or slightly lower temperatures than are present (e.g., Horrell, 1990). However, several factors (regional variations, habitat, and selective preservation) must be considered in interpreting isotopic measurements on planktonic foraminifera. First, the isotopically lightest measurement (27°C) is likely to represent the shallowest dwelling foraminifera. Even present day shallow-dwelling foraminifera give isotopic temperatures that are 3 to 5°C cooler than the surface. Further, selective dissolution of the more fragile, shallow- dwelling forms tends to bias estimates in the cold direction (Savin et al., 1975). Consequently, a reasonable interpretation of the isotopic data within the Cretaceous tropics is surface temperatures of 27 to 32°C. The range of possible interpretation is from similar to the present day (28°C) to several degrees higher than at present (Figure 6.1). Pre-Pleistocene Cenozoic isotopic temperatures are also substantially different from the present day. Shackleton (1984) presents data yielding isotopic paleotemperatures as low as 18°C for the low latitude Pacific from the Maastrichtian to the Late Miocene. Values similar to the present day occurred only in the late Neogene. Early Eocene and Early Miocene values represent tropical ocean sea-surface temperature minima in the Shackleton (1984) analysis. The Early Eocene low- temperature values have received particular attention (Shackleton and Boersma, 1981). Recent synthesis and interpretation of these and other isotopic data (Sloan, 1990) suggest that at a maximum, Early Eocene tropical surface temperatures were about 24°C, about 3 to 5°C lower than present values. Analysis of tropical sea-surface temperatures during the last glacial maximum also contributes to the notion of tropical temperature variation. Early estimates of tropical sea-surface temperatures from oxygen isotopes for ice age Figure 6.1 Cretaceous mean annual temperature limits in comparision with modern values (Barron, 1983). Some of the major constraints based on oxygen isotopes(benthic and plankontic foraminifera and bellemnites), reef distribution, and the absence of permanent ice. Solid line is "warmest" Cretaceous, dotted line is "coolest" Cretaceous, and dot-dashed line is present day.

Next: ARGUMENTS FOR TROPICAL TEMPERATURE STABILITY »
Effects of Past Global Change on Life Get This Book
×
Buy Hardback | $65.00 Buy Ebook | $49.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditions—or that cause catastrophic destruction of life?

Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient life—and how these findings may help us resolve today's environmental controversies.

Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening others—including profound effects on the early members of the human family.

An expert panel offers specific recommendations on expanding research and improving investigative tools—and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments.

This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!