National Academies Press: OpenBook

Effects of Past Global Change on Life (1995)

Chapter: Hierarchical Organization

« Previous: SUMMARY AND IMPLICATIONS
Suggested Citation:"Hierarchical Organization." National Research Council. 1995. Effects of Past Global Change on Life. Washington, DC: The National Academies Press. doi: 10.17226/4762.
×
Page 150

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THE RESPONSE OF HIERARCHIALLY STRUCTURED ECOSYSTEMS TO LONG-TERM CLIMATIC CHANGE: A CASE 150 STUDY USING TROPICAL PEAT SWAMPS OF PENNSYLVANIAN AGE cies replacement patterns, followed by ecosystem reorganization along different lines. During the Pennsylvanian, such major periods of extinction were rare, permitting the biotic-abiotic linkage to persist for millions of years. Figure 8.11 Comparison of species-, habitat-, and landscape-level changes in coal swamps during the upper Carboniferous. Habitat distributions are listed in a "range-through" fashion, based on first and last occurrence. Swamp type is a typological characterization of average quantitative landscape composition on a coal bed average basis. Hierarchical Organization These patterns are consistent with an interpretation of coal-swamp plant communities as hierarchically organized. Species have characteristic ecological amplitudes, which are more likely to be shared with closely related than distantly related species, at least in the less diverse, pre-angiosperm world. In a given habitat, the entire plexus of species defines a biotic network of evolved interactions. Loss of a few species from this network (extinction or extirpation) can be accommodated because the system has sufficient biotic linkages to be buffered; this notion runs counter to the findings of ecosystem models, where the greater the number of linkages, the lower is the stability of the system. Released resources and severed patterns of interaction are most likely to be utilized by species with similar morphological attributes. Particularly during the Carboniferous, in which ecosystems are strongly partitioned taxonomically, this means by a species related closely to the earlier occupant, and with similar growth form and life history. Thus, the ecomorphic-biotic structure of a habitat, given sufficient time to evolve, may strongly constrain the nature and dynamics of species replacement. Breakdown of the biotic habitat structure will occur during catastrophic extinction, as near the Westphalian-Stephanian boundary. The result is that the biotic fabric collapses and no longer can constrain the selection of replacement species. At such times the system may go into a lottery-like period of species interactions, perhaps controlled largely by interspecific competition (admittedly, this is almost impossible to document in the fossil record). The new system may reequilibrate and establish a new set of biotic limits to species replacement dynamics. The coal-swamp floras of the Stephanian bear close resemblance to Westphalian floras of the clastic wetlands (e.g., Pfefferkorn and Thomson, 1982). This suggests that many of the species or clades in Stephanian coal swamps

Next: Long-Term Species Replacement Dynamics: Evolutionary Implications »
Effects of Past Global Change on Life Get This Book
×
 Effects of Past Global Change on Life
Buy Hardback | $65.00 Buy Ebook | $49.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditions—or that cause catastrophic destruction of life?

Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient life—and how these findings may help us resolve today's environmental controversies.

Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening others—including profound effects on the early members of the human family.

An expert panel offers specific recommendations on expanding research and improving investigative tools—and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments.

This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!