National Academies Press: OpenBook

Effects of Past Global Change on Life (1995)

Chapter: Albian-Cenomanian and Arrival of Angiosperms

« Previous: INTRODUCTION
Suggested Citation:"Albian-Cenomanian and Arrival of Angiosperms." National Research Council. 1995. Effects of Past Global Change on Life. Washington, DC: The National Academies Press. doi: 10.17226/4762.
×
Page 157

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THE LATE CRETACEOUS AND CENOZOIC HISTORY OF VEGETATION AND CLIMATE AT NORTHERN AND 157 SOUTHERN HIGH LATITUDES: A COMPARISON Light and particularly temperature are the principal controlling factors for polar vegetation, whereas precipitation is generally the prime factor at lower latitudes (Ziegler, 1990). Realistic quantitative estimates of these physical conditions can be ascertained from fossil floras. These estimates are crucial data for climatic modeling and for understanding and predicting global climate change. Environmental parameters (mean annual temperature, MAT; mean annual temperature range, MAR; coldest month mean temperature, CMM) that can be determined from fossil floras, and their validity and limitations are reviewed by Spicer and Parrish (1990a). Parameters derived from fossil floras reflect vegetational response to the environment and are obtained by careful analysis and interpretation of leaf physiognomy (size and margin morphology, Bailey and Sinnott, 1915; Wolfe, 1971, 1979, 1985; Wolfe and Upchurch, 1987) and overall floral composition (Wolfe, 1979). Such information is available for northern high latitude floras, especially from upper Cretaceous to Eocene strata from northern Alaska. In southern high latitudes, fossil leaf assemblages are less common, and environmental interpretations are not yet well developed. Ongoing work on leaf floras of southern basins (e.g., Daniel et al., 1990; Parrish et al., 1991) should help correct this imbalance in data types, but in the meantime much of the southern data are derived, by necessity, from palynomorphs. Useful qualitative information can be obtained from wood anatomy, tree-ring data, and palynomorphs. Palynomorph assemblages contribute a broad-brush view of the regional vegetation or, if locally derived, can provide a more detailed picture. Generalized climatic conditions can be inferred from palynomorph and leaf fossils by analogy with presumed modern counterparts (nearest living relatives), but this method can be risky because it assumes evolutionary stasis. For conservative taxa (conifers, ferns), such conclusions may be reasonably reliable. The northern and southern high latitude (-60 to 90°) vegetational history from the middle Cretaceous through the Cenozoic is presented in this overview, along with its suggested relationship to global change, in particular climatic change. Vegetational changes evolved along different pathways in the northern and southern regions, although basic physiologic constraints of polar conditions are similar. Physiognomic parallels at both poles (e.g., highly dissected ginkgo leaves, the broad-leaved conifers Podozamites and Agathis-type, Sphenopteris-like ferns) illustrate this latter point. PALEOGEOGRAPHIC FRAMEWORK The difference in continental configurations between the northern and southern polar regions is the overriding cause of differences in the evolution of their respective floras. These differences are illustrated (Figures 9.1 and 9.2) in the paleogeographic reconstructions of Smith et al. (1981). During the Late Cretaceous and Cenozoic, vast land areas encircled the North Pole (to within 85°N), facilitating climatically driven northward and southward floral migrations, whereas an Antarctic continent continuously occupied the South Polar position, had relatively restricted dispersal corridors, and became increasingly isolated as other Gondwana fragments spread northward. SUMMARY OF HIGH-LATITUDE VEGETATIONAL CHANGES Significant botanical events, and vegetational types and trends for northern and southern high latitudes are outlined in Figures 9.3 to 9.6, plotted alongside "global change" information. These charts are based on studies and fossil localities cited below and in Figures 9.1 and 9.2. Northern Cretaceous Albian-Cenomanian and Arrival of Angiosperms In the middle Cretaceous, land areas extended northward to 75°N. In these latitudes, prior to the arrival of angiosperms near the end of the Albian, forests were conifer dominated with Podozamites, Arthrotaxopsis, and Elatocladus being the most common foliage (Smiley, 1966, 1967, 1969a,b; Samylina, 1973, 1974; Spicer and Parrish, 1986, 1990a; Spicer, 1987). Needle-leaved conifers were common. Ginkgophytes (Ginkgo, Sphenobaiera or Sphenarion, Ginkgoites) were diverse, but restricted to river margins (Ginkgo-like forms) or back levees (Sphenobaiera), and cycads were relatively common but spatially restricted. Ferns (e.g., Onychiopsis, Sphenopteris like forms) and Equisetites were early colonizers and common as ground cover. Tree productivity and water availability were high, and temperatures were typical of cool temperate regimes (Spicer and Parrish, 1986; Parrish and Spicer, 1988a). All vegetation was deciduous, could enter dormancy, or could over winter as underground organs or seeds (Spicer and Parrish, 1986). Palynological evidence shows that bryophytes, lycopods, and fungi were prevalent (May and Shane, 1985; Spicer et al., 1988), particularly in mire environments that gave rise to extensive coals (Youtcheff et al., 1987; Grant et al., 1988). Angiosperms that produced tricolpate pollen reached the northern high latitudes, including the Canadian Arctic, during the Albian (Jarzen and Norris, 1975; Singh, 1975; Scott and Smiley, 1979). In northern Alaska (Spicer, 1987) and Siberia (Samylina, 1974; Lebedev, 1978), leaf floras indicate that in the Cenomanian, platanoid angiosperms (e.g., "Platanus," Protophyllum, Pseudoprotophyllum,

Next: Turonian-Coniacian-Santonian »
Effects of Past Global Change on Life Get This Book
×
Buy Hardback | $65.00 Buy Ebook | $49.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditions—or that cause catastrophic destruction of life?

Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient life—and how these findings may help us resolve today's environmental controversies.

Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening others—including profound effects on the early members of the human family.

An expert panel offers specific recommendations on expanding research and improving investigative tools—and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments.

This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!