National Academies Press: OpenBook

Solar Influences on Global Change (1994)

Chapter: 8 RECOMMENDATIONS

« Previous: 7 RESEARCH STRATEGIES
Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×

Page 135

8—
Recommendations

Scientific Rationale For Assigning Priorities

A program of investigation of solar energy inputs into all parts of the Earth system is very much in concert with the goal and objectives of the U.S. Global Change Program. The USGCRP is motivated by the realization that global change can have tremendous impact on conditions essential to life on earth. This realization provides the basis for prioritization among the various components that can be expected to comprise a USGCRP scientific element on Solar Influences on Global Change. Of highest priority are those activities that will be most important for national and international policymaking.

Recommendations

Primary Recommendation

One activity ranks above all others for determining solar influences on global change:

Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×

Page 136

1. Monitor the total and spectral solar irradiance from an uninterrupted,overlapping series of spacecraft radiometers employing in-flightsensitivity tracking.

There is an urgent need to rapidly implement the necessary long term commitment for this monitoring because of the danger that the present monitoring sequence will be interrupted and the long term record invalidated as a result of lack of instrumental cross-calibration. This primary recommendation is particularly challenging and probably will not be achieved because of the dearth of ready access to space.

A series of small spacecraft dedicated to solar monitoring could provide the necessary data. Overlapping observations are required to cross-calibrate measurements by different instruments whose inaccuracies typically exceed the true solar variability. Simultaneous observations from different instruments provide important validation that real variability, rather than instrumental degradation, is being measured and provide the redundancy needed to preserve the long term data base in the case of instrument failure. Improved radiometric long term precision and calibration accuracies would contribute to a more reliable solar forcing record.

In lieu of a spacecraft series dedicated to solar monitoring, it may be possible to use the NOAA or DMSP operational satellites, for which overlapping is a feature of their design.

Additional Recommendations

To augment the prime monitoring task, a suite of efforts from diverse geophysical research fields is needed to achieve the USGCRP objectives of monitoring, understanding, and predicting solar influences on global change. Pursuit of recommendations 2 to 6 is essential to the crossdisciplinary effort needed to reduce uncertainties in knowledge of solar forcing of global change in order to provide a sound scientific basis for policy-making on global change issues. The actions of recommendations 7 to 12 are essential to ensure that complete understanding is achieved of all potential coupling mechanisms.

Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×

Page 137

2. Conduct exploratory modeling and observational studies to understand climate sensitivity to solar forcing.

Implied connections between the Sun and the paleoclimate record (Milankovitch orbital-induced variations and the Little Ice Age) should be fully investigated for the insights they might provide about the sensitivity of the climate system to solar forcing compared with increased greenhouse gases. New knowledge should be incorporated into existing GCMs utilized for climate prediction.

3. Understand and characterize, through analysis of solar images andsurrogates, the sources of solar spectral (and hence total) irradiancevariability.

The overall goal of this activity is to improve the ability of solar variability models to calculate solar radiative output variations and to provide reliable proxies to bolster the spaceborne monitoring effort. Toward this end, continue, without interruption, to monitor from ground based observatories the relevant proxy data, in particular certain relative spectral irradiances (such as the He I and Ca II indices, and the 10.7 cm flux) and solar images that display magnetic active regions (using, for example, full disk magnetograms, and He I, Ca II, and white light spectroheliograms). Use the improved solar variability models to extend the variability record into the past and to predict limits on future variability. Also important in this regard is connecting the variability sources to the physical solar processes that modulate the 14C and 10Be records.

4. Monitor, without interruption, the cycles exhibited by Sun-likestars, and understand the implications of these observations for long termsolar variability.

Tying the calculations of solar radiative output variations derived from solar observations (Recommendation 3) to the broader stellar context will help in this regard.

5. Monitor globally, over many solar cycles the middle atmosphere'sstructure, dynamics, and composition, especially ozone and temperature.

Long term records of ozone, temperature, and nitrogen oxides are especially important as they may allow the separation of solar from

Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×

Page 138

anthropogenic forcing in the troposphere. Solar effects on this region will only be determined from the results of such monitoring.

6. Understand the radiative, chemical, and dynamical pathways thatcouple the middle atmosphere to the biosphere, as well as the middleatmosphere processes that affect these pathways.

Both modeling and observational studies are needed.

7. Monitor continuously, with improved accuracy and long termprecision, the ultraviolet radiation reaching the Earth's surface.

This effort is critical, not only for determining the dosage of UV radiation at Earth, but also because of the dependence of the UV dosage on ozone concentrations, which are affected by both anthropogenic and solar forcings.

8. Understand convection, turbulence, oscillations, and magneticfield evolution in the solar atmosphere so as to develop techniques forassessing solar activity levels in the past and to predict them in thefuture.

A reliable theory of the solar activity cycle, of longer term variability, and of stellar dynamos in general will require physical descriptions of the processes that successfully reproduce solar phenomena observed over a number of solar cycles. Reliable monitoring of solar diameter could help to understand solar variability processes. The goal is to understand why the Sun varies at all.

9. Monitor continuously the energetic particle inputs to theEarth's atmosphere.

Space based measurements should emphasize the higher energies(> 100 MeV) and relativistic electrons. Understand, through in situ measurements, the relationship of space based measurements to the energy spectrum and fluxes of both solar and galactic energetic particles reaching different altitudes in the Earth's atmosphere.

10. Monitor the solar extreme ultraviolet spectral irradiance (atwavelengths less than 120 nm) for sufficiently long periods to fully assessthe long term variations.

Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×

Page 139

These measurements could be accommodated on the dedicated solar monitoring spacecraft identified in Recommendation 1.

11. Monitor globally over long periods the basic structure of thelower thermosphere and upper mesosphere so as to properly define the presentstructure and its response to solar forcing.

12. Conduct observational and modeling studies to understand thechemical, dynamical, radiative and electrical coupling of the upperatmosphere to the middle and lower atmospheres.

Analysis of solar soft X-ray forcing of nitric oxide levels, with possible inferences for nitrate deposits in ice cores, is an example of such a study. Ultimately, a global model of the Earth system is needed.

Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×

There was a problem loading page 140.

Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×
Page 135
Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×
Page 136
Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×
Page 137
Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×
Page 138
Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×
Page 139
Suggested Citation:"8 RECOMMENDATIONS." National Research Council. 1994. Solar Influences on Global Change. Washington, DC: The National Academies Press. doi: 10.17226/4778.
×
Page 140
Next: REFERENCES »
Solar Influences on Global Change Get This Book
×
Buy Paperback | $40.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Are variations in the energy generated by the Sun sufficient to modify the Earth's global environment at levels comparable to expected anthropogenic changes? Debated contentiously for more than a century, this question must now be posed with new urgency: the proper specification of natural global changes is a prerequisite for detecting anthropogenic impacts. Important advances over the past decade in our knowledge of the Sun and of the terrestrial responses to solar variability provides the basis for answering this question with unprecedented surety, but significant uncertainties remain. This book addresses current monitoring and understanding of solar influences on both the climate system and the ozone layer and prioritizes the research effort that will be needed to provide a sound scientific basis for policymaking related to global change issues.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!