National Academies Press: OpenBook

Isotopes for Medicine and the Life Sciences (1995)

Chapter: FRONT MATTER

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

Isotopes for Medicine and the Life Sciences

Committee on Biomedical Isotopes

Division of Health Sciences Policy

INSTITUTE OF MEDICINE

S. James Adelstein and Frederick J. Manning, Editors

NATIONAL ACADEMY PRESS
Washington, D.C.
1995

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

NATIONAL ACADEMY PRESS
2101 Constitution Avenue, N.W. Washington, DC 20418

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for this report were chosen for their special competencies and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The Institute of Medicine was chartered in 1970 by the National Academy of Sciences to enlist distinguished members of the appropriate professions in the examination of policy matters pertaining to the health of the public. In this, the Institute acts under both the Academy's 1863 congressional charter responsibility to be an adviser to the federal government and its own initiative in identifying issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

Support for this project was provided by the U.S. Department of Energy (Grant No. DE-FG02-93ER61702). This support does not constitute an endorsement by the U.S. Department of Energy of the views expressed in the report.

Library of Congress Catalog Card Number 94-74964

International Standard Book Number 0-309-05190-8

Additional copies of this report are available from:
National Academy Press
2101 Constitution Avenue, N.W. Box 285 Washington, DC 20055 Call 800-624-6242 or 202-334-3313 (in the Washington Metropolitan Area)

B502

Copyright 1995 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

The serpent has been a symbol of long life, healing, and knowledge among almost all cultures and religions since the beginning of recorded history. The image adopted as a logotype by the Institute of Medicine is based on a relief carving from ancient Greece, now held by the Staatlichemuseen in Berlin.

First Printing, December 1989

Second Printing, June 1990

Third Printing, January 1991

Fourth Printing, March 1995

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

COMMITTEE ON BIOMEDICAL ISOTOPES

S. JAMES ADELSTEIN (Chair), Cabot Professor of Medical Biophysics, Dean for Academic Programs,

Harvard Medical School, Boston, Massachusetts

THOMAS F. BUDINGER, Henry Miller Professor of Medical Research,

Lawrence Berkeley Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, California

R. EDWARD COLEMAN, Professor of Radiology and Director,

Nuclear Medicine, Duke University, Durham, North Carolina

DARLA DANFORD, Senior Nutrition Science Advisor,

Office of Disease Prevention and Health Promotion, Office of the Assistant Secretary for Health, U.S. Department of Health and Human Services, Washington, D.C.

WILLIAM C. ECKELMAN, Chief,

Positron Emission Tomography Department, National Institutes of Health, Bethesda, Maryland,

JERRY A. NOLEN, JR., Director of ATLAS,

Argonne National Laboratory, Argonne, Illinois

LEE L. RIEDINGER, Associate Vice Chancellor for Research,

University of Tennessee. Knoxville, Tennessee

THOMAS J. RUTH, Director,

Positron Emission Tomography Program, University of British Columbia, Vancouver, British Columbia, Canada

LEE S. SCHROEDER, Senior Physicist,

Lawrence Berkeley Laboratory, Berkeley, California

MICHAEL J. WELCH, Professor of Radiology and Director,

Division of Radiation Sciences, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, Missouri

STEVEN W. YATES, Professor, Department of Chemistry,

University of Kentucky, Lexington, Kentucky

Study Staff

VALERIE P. SETLOW, Division Director

FREDERICK J. MANNING, Study Director

JOSEPH S. CASSELLS, Senior Program Officer

A. EVERETTE JAMES, Senior Program Officer

SUSAN MORGAN, Project Assistant

MARGO CULLEN, Project Assistant

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
This page in the original is blank.
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

Preface

Few members of the general public are fully aware of the extent to which the atomic age affects their everyday lives. For many, bombs and power plants are their only associations with the term. The uses and benefits of radioactive isotopes in medicine, agriculture, industry, and science are widespread, however, allowing us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. In many cases, biological tracers for example, there is no alternative. A recent report assessing the role of isotopes in 80 industries and 475 occupations estimated that in 1991, in the United States alone, radioactive materials were responsible for 3.7 million jobs, $257 billion in total sales, and $45 billion in tax revenues to local, state, and federal governments (See Chapter 1).

This report focuses on isotopes in medicine and the life sciences, areas where their uses are particularly widespread and important in diagnosis, therapy, and research. More than 36,000 diagnostic procedures that employ radioisotopes are performed daily in the United States. Close to 100 million laboratory tests that use radioactive isotopes to measure some constituent of a biological sample are performed each year. In addition, some form of radioactivity is used to treat 150,000 to 200,000 patients each year.

The U.S. Department of Energy (DOE) and its predecessors, the Atomic Energy Commission and the Energy Research and Development Agency, have been instrumental in establishing and supporting these peaceful applications of atomic energy and have succeeded in a "technology transfer" of enormous magnitude. This very success, combined with the end of the Cold War and the general pressure to cut government spending, has created what many see as a crisis in the domestic supply of isotopes. Always a secondary mission at the many DOE

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

laboratories, isotope production has suffered as support for the laboratories' primary missions of research in nuclear and particle physics, nuclear weapons, and nuclear power has declined. The concerns of U.S. clinicians and researchers about the continuing availability of enriched stable isotopes and radionuclides have increased sharply since 1989, and the nuclear medicine community in particular has been highly vocal in pointing out that the needs of the various users in the United States will not be met adequately in a future market controlled by one or two foreign sources. It has been strongly urged with regard to those radionuclides needed for future research, that DOE fund a new accelerator facility with isotopes as its primary mission, a National Biomedical Tracer Facility.

In response to this urging and with the realization that changing national and scientific priorities would reduce the funding for the accelerator-based facilities at Los Alamos National Laboratory (Los Alamos Meson Physics Facility) and Brookhaven National Laboratory (Brookhaven Linac Isotope Producer), DOE turned to the Institute of Medicine to undertake an intensive examination of isotope production and availability, including the education and training of those who will be required to sustain the flow of radioactive and stable materials from their sources to laboratories and bedsides. This document is the report of the committee formed to examine these matters and provide recommendations for action.

The committee is comprised of 11 members, who were selected for their expertise in one of the technologies crucial to the production or use of isotopes covered by this report. Nevertheless the committee included members representative of a broad spectrum of viewpoints, including basic and applied researchers in the physical and life sciences, scientific administrators from both academic and government institutions, medical practitioners, and clinical investigators. In the course of the study, the full committee met four times in 2-day meetings, and subcommittees made 1-day site visits to isotope production facilities at Brookhaven National Laboratory on Long Island, Los Alamos National Laboratory in New Mexico, Canada's Tri-University Meson Facility, and the University of Missouri Research Reactor Center. Other important sources of information for the committee were the DOE Isotope Production and Distribution Program, specifically its director at the beginning of the study, Don Erb; representatives of a major isotope purchaser, the radiopharmaceutical industry, who addressed the committee at its second meeting; the half-dozen scientists who educated the committee on the state of the art of isotope separation at that meeting; and the reports of several previous committees, at the National Academy of Sciences and elsewhere, who wrestled with related charges in recent years.

As committee chair, I am acutely aware of the contributions that Institute of Medicine staff have made to the success of the study. Special thanks and acknowledgments are owed Project Assistants Susan Morgan and Margo Cullen. Susan made our meetings and travel as comfortable and convenient as possible and provided outstanding secretarial support both at the meetings and in produc-

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

ing our numerous preliminary drafts. We owe Margo our profound thanks for her painstaking production of our final product. A. Everette James and Joe Cassells, Senior Program Officers, who initially conceived the project and oversaw its birth, provided sage advice from start to finish. I am particularly grateful to Study Director Rick Manning for his skilled and professional support in shepherding the committee through its difficult task. Finally, I want to acknowledge the individual and collective contributions of the committee members. They represent an admirable example of busy but unselfish professionals volunteering their limited time tending to the scientific "commons" on which we all depend. It was a special opportunity to have worked with this outstanding group.

S. James Adelstein, Chair

Committee on Biomedical Isotopes

Page viii Cite
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
This page in the original is blank.
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×

Isotopes for Medicine and the Life Sciences

Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
This page in the original is blank.
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R1
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R2
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R3
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R4
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R5
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R6
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R7
Page viii Cite
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R8
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R9
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R10
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R11
Suggested Citation:"FRONT MATTER." Institute of Medicine. 1995. Isotopes for Medicine and the Life Sciences. Washington, DC: The National Academies Press. doi: 10.17226/4818.
×
Page R12
Next: EXECUTIVE SUMMARY »
Isotopes for Medicine and the Life Sciences Get This Book
×
 Isotopes for Medicine and the Life Sciences
Buy Paperback | $48.00 Buy Ebook | $38.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many cases—for example, biological tracers—there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!