help to determine who has accountability for accidents or safety violations.

While the school principal or college president is ultimately responsible for the safety of students in courses that involve laboratory activity, the laboratory instructor carries direct responsibility for what actually takes place under his or her direction. The instructor is responsible for developing the positive attitudes and habits of the culture of laboratory safety as well as the necessary skills for handling chemicals safely.

The expanding system of federal, state, and local regulations for the handling and disposal of chemicals has resulted in institutional infrastructures to oversee compliance with safety laws. Most industrial, governmental, and academic institutions that maintain laboratory operations have an environmental health and safety office made up of individuals with appropriate professional credentials. These individuals may have expertise in chemical safety, industrial hygiene, engineering, biological safety, environmental health, occupational medicine, health physics, fire safety, or toxicology. Functions of environmental health and safety offices generally include technical consultation, hazardous waste management, accident reviews, inspections and audits, compliance monitoring, training, record-keeping, and emergency response. These offices assist laboratory management in establishing safety policies and promoting high standards of laboratory safety. To be most effective, they should share in a genuine partnership with all department chairpersons or directors, principal investigators or managers, and laboratory workers in helping to design safety programs that provide technical guidance and training support that are relevant to the operations of the laboratory, are practical to carry out, and comply with the law. They should help technical and professional personnel to be aware of their legal responsibilities without being overwhelmed by a sense of unlimited liability from a mass of regulations.

In view of the importance of the environmental health and safety office to the whole safety enterprise, it should be directed by people who are truly knowledgeable about the operations. Safety directors should be given a high level of authority and responsibility for the development of a unified safety program. The safety director should also have direct access, when necessary, to people at the highest level in the institution who carry its ultimate accountability to the public through the media and the law. Department chairpersons need to deal directly with the safety officers, who are not only knowledgeable about safety regulations and consistent in enforcing them but also appreciate the unique problems of progressive training and prudent operations in academic teaching and research institutions.


Academic laboratories, like industrial and government ones, are concerned with meeting the fundamental safety goals of minimizing accidents and injuries, but there are differences that should be recognized when developing prudent and realistic safety programs for teaching institutions. Forming the foundation for a lifelong attitude of safety consciousness, risk assessment, and prudent laboratory practice should be an integral part of every stage of scientific education—in the classroom, in textbooks, and in the laboratory from the earliest exposures in primary or secondary school through graduate and postdoctoral training. Teaching and academic institutions have this essential and unique responsibility. They are also faced with the special problems that go with a rapid turnover of young people. The manifold requirements for record-keeping and waste handling can be especially burdensome for overworked teachers in high school or college laboratories.

In addition to providing well-trained students, institutions with graduate programs also have the responsibility of discovering new knowledge through research programs, and these often involve unpredictable hazards. The safety goals and the allocation of resources to achieve them are sufficiently different for high school, undergraduate, and graduate teaching laboratories that they are discussed separately here. In research universities the goals for safety in teaching laboratories and in research laboratories usually overlap but may also compete for attention and funds.

1.D.1 High School Teaching Laboratories

Recognizing and evaluating hazards, assessing risks, selecting appropriate practices, and performing them proficiently are essential elements of laboratory safety. The training to lay the foundation for acquiring these skills begins with the student's first experience in the laboratory. Even the earliest chemical experiments should cover the proper approach to dealing with the principal hazardous properties of chemicals (e.g., flammability, reactivity, corrosiveness, and toxicity) as an introduction to laboratory safety, and should also begin to instill responsibility for sound environmental practice when managing chemical waste. Advanced high school chemistry courses should assume the same responsibilities for developing professional attitudes toward safety and pollution control as are expected of college and university courses.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement