shape scientific judgment in fundamental ways. For example, Einstein's rejection of quantum mechanics as an irreducible description of nature—summarized in his insistence that "God does not play dice"—seems to have been based largely on an aesthetic conviction that the physical universe could not contain such an inherent component of randomness. The nineteenth-century geologist Charles Lyell, who championed the idea that geological change occurs incrementally rather than catastrophically, may have been influenced as much by his religious views as by his geological observations. He favored the notion of a God who is an unmoved mover and does not intervene in His creation. Such a God, thought Lyell, would produce a world in which the same causes and effects keep cycling eternally, producing a uniform geological history.

Does holding such values harm a person's science? In some cases the answer has to be "yes." The history of science offers a number of episodes in which social or personal beliefs distorted the work of researchers. The field of eugenics used the techniques of science to try to demonstrate the inferiority of certain races. The ideological rejection of Mendelian genetics in the Soviet Union beginning in the 1930s crippled Soviet biology for decades.

Despite such cautionary episodes, it is clear that values cannot—and should not—be separated from science. The desire to do good work is a human value. So is the conviction that standards of honesty and objectivity need to be maintained. The belief that the universe is simple and coherent has led to great advances in science. If researchers did not believe that the world can be described in terms of a relatively small number of fundamental principles, science would amount to no more than organized observation. Religious convictions about the nature of the universe have


The case of polywater demonstrates how the desire to believe in a new phenomenon can sometimes overpower the demand for solid, well-controlled evidence. In 1966 the Soviet scientist Boris Valdimirovich Derjaguin lectured in England on a new form of water that he claimed had been discovered by another Soviet scientist, N. N. Fedyakin. Formed by heating water and letting it condense in quartz capillaries, this "anomalous water," as it was originally called, had a density higher than normal water, a viscosity 15 times that of normal water, a boiling point higher than 100 degrees Centigrade, and a freezing point lower than zero degrees.

Over the next several years, hundreds of papers appeared in the scientific literature describing the properties of what soon came to be known as polywater. Theorists developed models, supported by some experimental measurements, in which strong hydrogen bonds were causing water to polymerize. Some even warned that if polywater escaped from the laboratory, it could autocatalytically polymerize all of the world's water.

Then the case for polywater began to crumble. Because polywater could only be formed in minuscule capillaries, very little was available for analysis. When small samples were analyzed, polywater proved to be contaminated with a variety of other substances, from silicon to phospholipids. Electron microscopy revealed that polywater actually consisted of finely divided particulate matter suspended in ordinary water.

Gradually, the scientists who had described the properties of polywater admitted that it did not exist. They had been misled by poorly controlled experiments and problems with experimental procedures. As the problems were resolved and experiments gained better controls, evidence for the existence of polywater disappeared.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement