National Academies Press: OpenBook

Plasma Science: From Fundamental Research to Technological Applications (1995)

Chapter: RECENT ADVANCES IN NONNEUTRAL PLASMAS

« Previous: INTRODUCTION AND BACKGROUND
Suggested Citation:"RECENT ADVANCES IN NONNEUTRAL PLASMAS." National Research Council. 1995. Plasma Science: From Fundamental Research to Technological Applications. Washington, DC: The National Academies Press. doi: 10.17226/4936.
×
Page 48

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NONNEUTRAL PLASMAS 48 specifically on single-component plasmas, with emphasis on pure electron and pure ion plasmas. Research and development in this area is likely to have a significant impact on a wide range of important applications, such as new generations of precision clocks; chemical analysis by improved methods of mass spectrometry; and the accumulation, storage, and transportation of antimatter. Early research on nonneutral plasmas predated by many decades common usage of the term "plasma." For example, efforts to investigate the equilibrium and stability properties of nonneutral electron flow began with Child (1911), and continued with the work of Langmuir (1923), Llewellyn (1941) and Brillouin (1945), and work on beam-type microwave devices in the 1940s and 1950s. During the past 20 years, interest in the physics of single-component plasmas has grown substantially in such diverse areas as the equilibrium, stability, and transport properties of these plasmas; phase transitions in two- and three-dimensional plasmas; astrophysical studies of large-scale nonneutral plasma regions in the magnetospheres of neutron stars; and the development of positron and antiproton ion sources. In the case of trapped-ion plasmas, an important synergism has developed between atomic physicists and plasma physicists. Atomic physicists have developed methods to confine and study small collections of ions with great precision. With the addition of more particles, issues of collective oscillations and confinement properties of spatially extended, three-dimensional plasmas become relevant and raise a number of important questions. Study of these questions has illuminated fundamental issues in plasma physics. It has resulted in enhanced capabilities in the creation and control of pure ion plasmas for precision measurements of fundamental constants and for applications such as atomic clocks. A significant fraction of nonneutral plasma research is closely tied to important technological applications. In contrast to the general development of fundamental plasma experiments that has been hindered significantly in the past two decades due to lack of support, experimental progress in nonneutral plasma research has been excellent, which has stimulated much progress in the theory of nonneutral plasmas. It is the conclusion of the panel that the relative success of research on nonneutral plasmas was due to a strong and dedicated program of support in this area by the Office of Naval Research, with complementary support from the National Science Foundation and the Department of Energy. The panel concludes that this mode of support for nonneutral plasma research should be considered a model for the support of fundamental plasma experiments in the broader area of neutral plasma research. RECENT ADVANCES IN NONNEUTRAL PLASMAS The following summarizes significant advances in the physics of nonneutral plasmas during the past decade.

Next: Electron Plasmas »
Plasma Science: From Fundamental Research to Technological Applications Get This Book
×
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!