mental profile of trade flows has received scant attention until recently, in the context of trade with Mexico.

By weight, commodities dominate trade. The mass of manufactured products traded contributes little to the total but may be responsible for domestic waste generation and discharges to the environment. During 1990, exports were dominated by agricultural products (33 percent), coal (23 percent), and chemicals (10 percent), all goods associated with domestic pollution. In the same year, crude oil and petroleum products accounted for over 60 percent of U.S. imports by weight, with metals and minerals accounting for another 20 percent (Bureau of the Census, 1993). We lack ready means to assess how the spatial redistribution of economic functions would affect environmental quality.

Extractive Waste Ratios

Extractive waste ratios measure resource efficiency in the mining industry. Recalling Figure 1 confirms the massiveness of wastes generated in this sector. Rock removed to expose mineral and ore bodies accounts for most of this waste. This material may be harmless, but exposing raw earth to wind and water can raise local acidity levels and allows for transport of trace elements. The sheer amounts of materials mobilized in mining and the economic incentive to minimize wastes combine with environmental objectives to advocate metrics of efficiency. Geological characteristics primarily determine overburden and tailings generated, but judgmental variables also affect mine wastes. One measure, subject to some physical constraints, is the amount of mine wastes per ton of mineral or ore mined, or primary metal produced. A separate useful measure, already used at the company level, looks at other inputs such as water and energy use per ton of finished product (Chiaro and Joklik, 1997). Measures of the recovery of by-products (e.g., methane in coal seams, sulfuric acid from smelter emissions, and metals from flue dusts) provide further examples of environmental indicators for the mining and mineral processing sector.


Industry operates and people behave within a system that evolves to satisfy human wants and uses a dynamic set of means to achieve them. As a discipline, industrial ecology discourages reducing the system to components and examining them in strict isolation. The challenge for national material metrics, as well as other national environmental metrics, is to quantify and integrate relevant data that elucidate the primary structure and development of the system from an environmental perspective.

National material metrics rely on empirical data. Various agencies of the federal government collect relevant data for one purpose or another. However,

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement