have conditioned the attitudes of students. It can be difficult to convince students who believe they have no aptitude for mathematics that they can understand even the simplest mathematical relationships. Their belief can serve as a self-fulfilling prophecy, resulting in mathematics avoidance. Tobias (1978) showed how mathematics avoidance in high school resulted in some young women's lack of preparation for college-level mathematics and science courses. Although men may have math anxiety, women are more likely to be affected (Sadker and Sadker, 1994).

To investigate students' attitudes toward science, some faculty give a brief questionnaire on the first day of class. Useful information for understanding students includes their perceptions of the process of science, of scientists themselves, and of the concepts and topics to be presented in the course. Students' perceptions can be surprising. The answers to questions such as those posed below can guide you throughout the entire semester.

  • What is science?

  • What is meant by scientific thinking?

  • How is science done by scientists?

  • How do scientists monitor the validity of their work?

  • How has scientific thought or a scientific discovery helped society?

  • How has scientific information had a negative effect on society?

  • How do scientists help society safeguard against abuses of science or technology?

Having students respond periodically throughout the term to these questions can lead to more effective teaching. While lecturing or leading discussions, the teacher can refer to responses and perceptions of individual students (without revealing their names). This gives students the sense that your lectures contain more dialogue than monologue and piques students' interest because their questions or opinions have become reference points in the presentations.

However, it is important that you refer to student responses carefully, even if the student's identity is not divulged. Making disparaging or condescending comments about a student's work can result in that student's developing negative attitudes about the course, the instructor, and the student's own abilities.


External pressures that students face vary from school to school, and it is important for you to understand any particular situations of students enrolled in your courses. For example, fewer than 50 percent of college students in the fall of 1991 were 21 years old or younger. The older they were, the more likely they were to attend college part time while working full time or to attend full time while working part time to finance their education. Students can arrive at class tired from a day at work or having to juggle their class schedules so they can work. Many have family responsibilities. Others have been out of the work force for some time, may be changing careers voluntarily, or may be changing careers as the result of layoffs. They may feel either ill at ease attending classes with students young enough to be their children or alienated by a college environment that has changed since their earlier student days (Shields, 1995). At the same time, older students are often more focused, with clearer goals and interests (Grosset, 1991). Their life experiences can enrich class or group discussions.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement