refers to current CPR systems, meaning those clinical information systems that are beginning to approximate the ideal CPR system envisioned by the committee for the future (see Chapter 2).

The committee selected and reviewed nine technologies that are significant for CPR systems. They include (1) databases and database management systems, (2) workstations, (3) data acquisition and retrieval, (4) text processing, (5) image processing and storage, (6) data-exchange and vocabulary standards, (7) system communications and network infrastructure, (8) system reliability and security, and (9) linkages to secondary databases. This section describes the key attributes of these crucial technologies.

Databases and Database Management Systems

It is important to distinguish between the clinical data—that is, the computer-based patient record, or CPR—and the system that captures and processes those data—that is, the CPR system. CPR functions relate to the collection of data, such as patients' medical problems, diagnoses, treatments, and other important patient information, including follow-up data and quality measures. CPR system functions relate to storage capacity, response time, reliability, security, and other similar attributes, but the system relies on the collection of clinical data, the core CPR, to support virtually all of its activities.


The most desirable database model for CPR systems involves either (1) a distributed database design—that is, a system with physically distributed computers and databases but with logical central control of the entire record; or (2) a centrally integrated physical database design—that is, a centrally located, complete CPR within a single computer-stored database (see Figure 3-1);1 or (3) some hybrid or mix of these two approaches. In any case, the key requirements are central control and organizational integrity of the entire record for each individual patient. Central control permits authorized persons using a terminal located anywhere in the information system to access the entire integrated patient record or any of its parts, regardless of the locations of any other departmental subsystems where the various data items may have originated. (Access is allowed only on the basis of parameters specific to authorized users.)


The selection of the database management system that undergirds a CPR system is critical to the performance and success of the system. Several publications during the past decade have discussed this issue: Barnett et al. (1982); Pryor et al. (1983), Wiederhold (1986), Kirby et al. (1987), McDonald et al. (1988), Whiting-O'Keefe et al. (1988), Wilton and McCoy (1989), Canfield et al. (1990), Friedman et al. (1990), and Hammond et al. (1990).

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement