out the actual data transfers. For example, one potential template might be HCFA's Uniform Clinical Data Set (UCDS), a collection of approximately 1,600 data elements (Krakauer, 1990). Over time, many other relevant data sets for varied purposes are likely to be generated using subsets from the universe of data elements defined in the CCDD. For example, emergency room (ER) physicians might designate a small set of clinical data elements from the CCDD (such a subset could be the ER template) that are required to facilitate appropriate care in an emergency setting. This template could then be used to formulate an appropriate health data-exchange standard to perform the actual transfer of patient data between disparate CPR systems.

The diversity of patient record data is likely to continue as a number of different vendors and mix of institutions, service bureaus, reimbursement agencies, and governmental agencies increase their use of clinical data. It is essential, therefore, that development and promotion of standards for data representation and data exchange be major priorities. Without such standards, it will be impossible to support the necessary exchange of CPR data among the different interested organizations and institutions.


Although progress has been steady over the past two decades in developing complete CPR systems, and although several powerful clinical information systems have become operational in recent years, as yet not one is capable of supporting the complete CPR. Most of the former technological barriers to developing CPR systems have now or are about to disappear, and no technological breakthroughs are needed to implement CPR systems. Nevertheless, further maturation of a few emerging technologies, such as voice-input or voice-recognition and text-processing systems, would facilitate the development of state-of-the-art CPR systems in the 1990s.

Many different standards must be developed, tested, and deployed before the CPR can realize its full potential. Standards to facilitate the exchange of health care data are needed now so that clinical data may be aggregated and analyzed to support improved decision making. When clinical data from CPR systems are pooled in regional and national databases and made available through networks, they will constitute a vast information resource on which to base health care policy, clinical studies of effectiveness and appropriateness, and equitable reimbursement policies.

Standards are also needed for the development of more secure CPR systems. All of this effort should focus on ensuring the integrity of the clinical data in the CPR and on patient confidentiality. Confidentiality of health data in CPR systems is crucial to the success of these systems. Further, confidentiality must be maintained not only for the patient but for all health care professionals and especially for members of the health care team.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement