National Academies Press: OpenBook
« Previous: B9: Ethylene glycol
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

B10 Glutaraldehyde

Hector D. Garcia, Ph.D.

Johnson Space Center Toxicology Group

Biomedical Operations and Research Branch

National Aeronautics and Space Administration

Houston, Texas

PHYSICAL AND CHEMICAL PROPERTIES

Glutaraldehyde, an aliphatic dialdehyde, is a highly reactive compound that has been isolated as a water-soluble oil and usually is stored as an aqueous solution to inhibit polymerization (Sax, 1984). Unbuffered aqueous solutions of glutaraldehyde are stable for long periods of time, have a mildly acid pH, a negligible odor, and are not potently antimicrobial. When buffered to an alkaline pH of 7.5 to 8.0 with sodium bicarbonate, the glutaraldehyde is activated; it has a strong pungent odor, and its antimicrobial activity is greatly enhanced for periods of up to 14 days (Stonehill et al., 1963).

Synonyms:

1, 5-Pentanedial, glutardialdehyde, glutaric dialdehyde, NCI C55425, 1, 5-pentanedione

Formula:

C5H8O2; CHO(CH2)3CHO

CAS number:

111-308

Molecular weight:

100.13

Boiling point:

187-189°C

Melting point:

-14°C

Solubility:

Soluble in all proportions in water, ethanol, and benzene

Conversion factors at 25°C, 1 atm:

1 ppm = 4.09 mg/m3

1 mg/m3 = 0.244 ppm

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

OCCURRENCE AND USE

Glutaraldehyde is widely used in embalming; in the manufacture of adhesives, sealants, and electrical products; as a cross-linking agent for proteins and polyhydroxy compounds; in microcapsules containing flavoring agents; and as a tissue fixative in electron microscopy, the paper and leather tanning industries, and x-ray film developing solutions. It is also used as a sterilizing agent for plastics, rubber, thermometers, lenses, and other surgical, dental, and hospital equipment (Stonehill et al., 1963; Lahav, 1977; Biophysics Research and Consulting Corporation, 1980; Hemminki et al., 1982; Wiggins et al., 1989). Glutaraldehyde is an effective sporicidal agent, requiring about 3 h for an almost complete kill of spores as well as gram-negative and gram-positive bacteria, fungi, and viruses. Glutaraldehyde has been used in surgical procedures including colonic anastomoses (D'Ovidio et al., 1981) and dental pulpotomies (Ranly et al., 1989; Feigal and Messer, 1990; Ketley and Goodman, 1991). Glutaraldehyde solutions (5-25%) are used clinically to treat skin disorders, including warts, hyperhidrosis (excessive sweating of the hands or soles of the feet), herpes simplex, and herpes zoster, and in the preparation of grafts and bioprostheses (Beauchamp et al., 1992). The preservative and antimicrobial properties of glutaraldehyde have found broad application in cosmetic, toiletry, and chemical specialty products because of glutaraldehyde's water solubility and usefulness in systems containing secondary or tertiary amines, quaternary ammonium compounds, or protonated amines (Beauchamp et al., 1992).

Glutaraldehyde solutions often are used as cell and tissue fixatives in biochemical experiments during space-shuttle flights.

TOXICOKINETICS AND METABOLISM

No data were found on the uptake, distribution, metabolism, or elimination of inhaled glutaraldehyde vapors. The discussion below relates to percutaneous or intravenous routes of exposure.

The extent of systemic distribution of glutaraldehyde that was applied to a pulpotomized tooth of a rat was estimated to be 40 nmoles, or 25 % of the applied dose. Metabolic studies using that preparation showed that glutaraldehyde was eliminated in the urine (the urinary metabolites

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

have not been characterized) and in expired gases (as CO2); 90% was cleared from the rats' body tissues in 3 d (Ranly et al., 1989).

Percutaneous penetration of topically applied glutaraldehyde solutions was studied in vitro using human stratum corneum from the chest, abdomen, and sole, and epidermis from the abdomen (Reifenrath et al., 1985). The results showed that glutaraldehyde does not penetrate the thick stratum corneum of the sole, but that 3.3% to 13.8% of the applied dose penetrated the thin stratum corneum of the chest and abdomen, and 2.8% to 4.4% of the applied dose penetrated the isolated epidermis. More recent studies reported < 1% penetration by glutaraldehyde through the skin of rats, mice, rabbits, guinea pigs, and humans (Tallant et al., 1990).

In studies of rats and rabbits given 0.075% or 0.75% [1, 5-14C]-glutaraldehyde intravenously, the majority of the radioactivity was excreted as 14CO2; approximately 80% was exhaled in the first 4 h. The fate of the unlabeled carbon atoms has not been directly established, and direct identification of metabolites has not been carried out (Beauchamp et al., 1992). Determination of the fate of glutaraldehyde in vivo is complicated by the fact that 14CO2 produced during metabolism of [1,5-14C]glutaraldehyde could be recycled and incorporated into the normal monomers required for synthesis of macromolecules. Thus, deposition of radioactivity at the site of administration does not necessarily represent only covalent binding of glutaraldehyde to macromolecules.

TOXICITY SUMMARY

Background

Relatively few toxicity studies have been done on glutaraldehyde, considering its widespread use. Many of the studies that have been done test the toxicity of glutaraldehyde solutions rather than glutaraldehyde vapors. A study comparing the acute oral toxicities versus the acute inhalation toxicities of 108 chemicals concluded that, although a positive correlation of 0.53 (p = 0.001) was demonstrated for toxicities via the two routes of exposure, the magnitude of the correlation was so low that the predictive value of one for the other was limited (Kennedy et al., 1991). Thus, even though mention will occasionally be made

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

below of toxicities due to noninhalation exposures, these will not be used to set acceptable concentrations for inhalation exposures.

Acute Exposures
Irritation and Depressed Weight Gain

Glutaraldehyde is a relatively strong irritant to the nose and a less strong irritant to the eyes and skin (Anonymous, 1976). The odor threshold is 0.04 ppm (Beauchamp et al., 1992). Sensory irritation and inflammation of the nasal mucosa, as well as depressed weight gain, were noted in rats exposed to glutaraldehyde via inhalation for 6 h/d for 9 d at 2.1 or 3.1 ppm; significant mortality was seen at 3.1 ppm (Ballantyne et al., 1985). Fischer 344 (F344) rats exposed to glutaraldehyde for 6 h/d, 5 d/w, for 3 mo at 0.049 or 0.194 ppm showed perinasal wetness and significantly decreased weight gain but no damage to the nasal mucosa and no histopathological lesions in any organ, although the activities of several serum enzymes (phosphokinase, lactate dehydrogenase, and hydroxybutyric dehydrogenase) were increased (Greenspan et al., 1985).

A solution concentration of 1% was reported to be the threshold for glutaraldehyde-induced erythema in rabbit skin (Ballantyne et al., 1985). Instillation of 20-40 mM glutaraldehyde into the nasal cavities of rats caused epithelial changes characteristic of inhalation exposure to a number of irritating gases (St. Clair et al., 1990).

Respiratory Distress

A single 8-h inhalation exposure of rats to saturated glutaraldehyde vapors (concentration not measured) produced excess lacrimation and salivation, audible breathing, and mouth breathing (Ballantyne, 1986). Single exposures (6-8 h) of rats to statically generated steady-state vapor atmospheres produced only signs of sensory irritation to the eyes and respiratory tract (Ballantyne et al., 1985; Ballantyne, 1986). Measurements indicated an initial glutaraldehyde concentration of 11 ppm,

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

decreasing to 2 ppm at 6 h, and an average of 4.3 ± 3.4 (standard error) ppm (Ballantyne, 1986).

In 2-w inhalation exposures of rats and mice to glutaraldehyde at 0, 0.16, 0.5, 1.6, 5, and 16 ppm for 6 h/d, 5 d/w, all rats and mice exposed to glutaraldehyde at 5 or 16 ppm died before the end of the studies, as did all mice exposed at 1.6 ppm (Kiri, 1992). The deaths were attributed to severe respiratory distress. Mice appeared to be more sensitive than rats because the small airways of the nasal passage were more easily blocked by cell debris and keratin. Lesions noted in the nasal passage and larynx of rats and mice included necrosis, inflammation, and squamous metaplasia. At higher concentrations, similar lesions were present in the trachea of rats and mice and in the lung and tongue of rats (Kiri, 1992).

Similar lesions in the respiratory tract were seen in 13-w studies of rats and mice exposed to glutaraldehyde at 0, 0.0625, 0.125, 0.25, 0.50 and 1.0 ppm, but the evidence of systemic toxicity was unclear following histopathological or clinical pathology assessments (Kiri, 1992). Lesions of the nasal passages in rats were seen at concentrations as low as 0.125 ppm; the severity increased with increasing concentrations. In mice, a no-observed-adverse-effect level (NOAEL) was not reached, because inflammation was found in the anterior nasal passage at concentrations as low as 0.0625 ppm (Kiri, 1992).

Hepatitis

A single 24-h inhalation exposure of NMRI mice to glutaraldehyde vapor at 33 ppm induced toxic hepatitis in 9 of 10 mice, and 8 ppm caused local inflammation of the liver, possibly not of toxic origin, in 1 of 10 mice (Varpela et al., 1971).

Lethality

In rats, the 4-h LC50 values for dynamically generated glutaraldehyde vapor were 24 (17-33) ppm for males, and 40 (15-106) ppm for females (Ballantyne et al., 1985). As noted above, however, single exposures (6-8 h) of rats to statically generated, saturated glutaraldehyde-vapor

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

atmospheres up to 11 ppm produced only signs of sensory irritation to the eyes and respiratory tract (Ballantyne et al., 1985; Ballantyne, 1986). The LC50 value (5000 ppm) listed in the National Institute for Occupational Safety and Health's Registry of Toxic Effects of Chemical Substances (RTECS) (NIOSH, 1987) is from a 1972 Czecholovakian publication (Marhold, 1972) and is given little credence because it is so much higher than the values reported by others in more recent studies. The large discrepancy between the LC50 values of Ballantyne et al. (1985) and RTECS could be explained if the concentrations reported in the Czech article on which the RTECS value is based were nominal rather than analytical. The concentrations reported by Ballantyne et. al. (1985) were analytical concentrations. The high reactivity of glutaraldehyde makes it very difficult to maintain atmospheric concentrations at nominal values.

Genotoxicity

Glutaraldehyde was found to be negative for genotoxicity in some in vitro and in vivo genotoxicity assays. Negative results were observed at concentrations spanning cytotoxic to noncytotoxic doses in the following test systems: mutagenicity in Salmonella strains TA 98 and TA 100 with and without microsomes (Hemminki et al., 1980; Slesinski et al., 1983), the Chinese hamster ovary cell and hypoxanthine guanine phosphoribosyl transferase (CHO/HGPRT) gene-mutation system (Slesinski et al., 1983), the sister-chromatid-exchange (SCE) test with CHO cells (Slesinski et al., 1983), and the primary rat hepatocyte unscheduled DNA synthesis (UDS) system (Slesinski et al., 1983). No increase was seen in the dominant lethal index in mice exposed orally to glutaraldehyde at 30-60 mg/kg (Tamada et al., 1978).

Glutaraldehyde was positive for genotoxicity in other in vitro assays (Sasaki and Endo, 1978; McGregor et al., 1988; St. Clair et al., 1991; Jung et al., 1992). They include induction of DNA-protein cross-linking in human TK6 lymphoblast cells and dose-related increases in mutations at the thymidine kinase locus in the same cells (St. Clair et al., 1991). In primary rat hepatocytes, glutaraldehyde induced a marginal increase in UDS (St. Clair et al., 1991). In a collaborative study by three laboratories, glutaraldehyde was found to be mutagenic in Salmonella typhimurium TA 102 by all three laboratories (Jung et al., 1992).

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Subchronic Exposures
Lethality

Of 12 rats per group exposed 6 h/d for 9 d to glutaraldehyde at 3.1 ppm, seven males and six females died between the sixth and ninth exposure days (Ballantyne, 1986). Nine of 10 male rats and 7 of 10 female rats died after exposure to glutaraldehyde at 2.1 ppm for 6 h/d for 9 d, as did 1 of 10 male rats exposed at 0.63 ppm (B.J. Greenspan, Pacific Northwest Laboratory, Richland, Wash., personal commun., 1992).

Irritation, Hematological Effects, and Decreased Organ Weights

Rats exposed 6 h/d for 9 d to glutaraldehyde at 3.1 ppm showed signs of irritation; the signs were audible breathing and periocular and perinasal encrustation; increases in neutrophil count, erythrocyte count, hematocrit, and hemoglobin concentration; and decreased organ weights for liver, kidney, lung, heart, and testes (Ballantyne, 1986). At 1.1 ppm, half of the animals demonstrated mouth and abdominal breathing and the same hematological and organ-weight effects as seen at 3.1 ppm except that lung weights were not decreased. At 0.3 ppm, there were no signs of irritation, no significant hematological effects, and only a slight increase in lung weight. (Ballantyne, 1986). Histological examination of tissues from survivors sacrificed the day after the final exposure at 3.1 ppm revealed hepatocellular atrophy, rhinitis, and mild atrophy of the olfactory mucosa. Rhinitis and squamous metaplasia of the nasal mucosa occurred at 1.1 ppm. No histological abnormalities were seen in animals exposed at 0.3 ppm (Ballantyne, 1986).

Contact Dermatitis

There are numerous reports of mild-to-severe contact dermatitis in humans and animals resulting from occasional or incidental contact with glutaraldehyde solutions or vapors. Contact dermatitis, particularly in medical personnel who use 2% glutaraldehyde solutions to sterilize

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

equipment, has been reported (Jordan et al., 1972; Bardazzi et al., 1986; Di Prima et al., 1988; Nethercott et al., 1988a, b; Stern et al., 1989; Jachuck et al., 1989; Charney, 1990). There appears to be substantial variation in individual susceptibility to glutaraldehyde-induced dermatitis, which, in a few individuals, appears to be due to allergic reactions developing after repeated contact with glutaraldehyde.

Respiratory Difficulty, Rhinitis, Headache, Watering of the Eyes

Numerous reports describe the risks of occupational exposure to glutaraldehyde vapors in hospital staff involved in cold sterilization of endoscopes and other medical equipment. In a study by Jachuck et al. (1989), exposed hospital personnel (eight of nine exposed) complained of headache, respiratory difficulty, rhinitis, and watering of the eyes. Measurements of the glutaraldehyde vapor concentration in a nurse's breathing zone showed 0.12 ppm (Jachuck et al., 1989). A single individual also reported nausea, but this symptom was not reported in any of the other literature found. A case study by Charney (1990) reported hives, chest tightness, and watery eyes in 19 workers in an area where glutaraldehyde was used in counter-top baths for bronchoscope disinfection and where ambient and breathing-zone samples yielded concentrations up to 0.25 ppm. In other similar studies, personal breathing-zone samples in two hospitals ranged up to 6.1 and 8.1 ppm and an area sampling ranged up to 3 ppm (Charney, 1990). A case report by Benson (1984) of a nurse who worked in an endoscopy unit and who complained of constant eye irritation indicated that lung function was reduced from about 400 L/min to about 300 L/min during the work week but fully recovered on the weekends when no exposure occurred. No measurement of vapor concentrations was made, and other workers doing the same job did not have similar complaints. In a survey on routine exposures of English hospital workers, Leinster et al. (1993) collected 77 samples (39 personal and 38 static) from 14 locations in six hospitals. Measured concentrations ranged up to 0.70 ppm for a 15min sample during the cleaning of suction bottles with Cidex (2% glutaraldehyde); more typical values for other operations were 0.04 ppm to 0.22 ppm (Leinster et al., 1993). The typical pattern of exposure was contact for 4 to 5 min every 30 min throughout the shift when endo-

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

scopes were put into or removed from cleaning units (Leinster et al., 1993). Spontaneous complaints of rhinitis during this survey imply that some persons can experience adverse effects at concentrations below the current occupational exposure standard (Leinster et al., 1993).

Rats exposed 6 h/d, 5 d/w, for 14 w to glutaraldehyde at concentrations of 0.194, 0.049, or 0.021 ppm showed signs of irritation consisting of periocular and perinasal encrustation at 0.194 and 0.049 ppm, but showed no significant hematological, organ-weight, histological, urinary, or gross pathological effects (Ballantyne, 1986). Thus, subchronic exposures at low concentrations ranging from 49 to 194 ppb produce signs of sensory irritation, and exposures at 20 ppb produce transient reduced body-weight gain, indicating mild sensory irritation but not toxicity (Ballantyne, 1986).

Reproductive and Developmental Toxicity

No significant increases in the risk of spontaneous abortions and fetal malformations were found in retrospective epidemiological studies of Finnish hospital staff performing sterilization or nurses exposed to glutaraldehyde or formaldehyde (Hemminki et al., 1982, 1985). The same studies found that exposure to ethylene oxide was associated with an increased frequency of spontaneous abortions, and maternal use of cytostatic drugs was associated with fetal malformations.

Studies with rodents also have indicated a low teratogenicity due to glutaraldehyde exposure during pregnancy. Glutaraldehyde given by gavage to pregnant albino mice on d 6-15 of gestation was judged not to be teratogenic at doses up to 100 mg/kg/d, which killed 19 of 35 dams and produced a significant increase in the number of stunted fetuses (Marks et al., 1980).

No rodent studies were found that assessed the effects of inhalation of glutaraldehyde vapors on fetal development, but given the known data on glutaraldehyde's high chemical reactivity, metabolism, and toxicokinetics, it seems unlikely that significant systemic absorption and distribution would occur.

No studies were found that assessed the effects of glutaraldehyde on female reproductive function or fertility. Glutaraldehyde did not reduce the fertility of exposed male mice given a single oral dose of glutaraldehyde at 30 or 60 mg/kg, and there were no significant effects on

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

embryo-fetal viability in a dominant lethal assay (Tamada et al., 1978).

Carcinogenicity

A Union Carbide Corporation study of rats given glutaraldehyde in drinking water at concentrations of 0, 50, 250, or 1000 ppm for 2 y showed a significantly increased incidence of large-granular-cell leukemia at 50, 250, and 1000 ppm in females only (Behen, 1991). Because this tumor type occurs spontaneously (23% to 24%) in females of the strain of rats used, the results might represent a modulating effect on this spontaneously occurring tumor rather than a direct chemical carcinogenic effect.

Although related aldehydes (formaldehyde, acetaldehyde, and malonaldehyde) have been shown to be carcinogenic in laboratory animals, the National Institute of Occupational Safety and Health has stated that the data are insufficient to allow conclusions about the carcinogenicity of glutaraldehyde (NIOSH, 1991). It is not known if that opinion took into account the results of the 2-y Union Carbide study described in the preceding paragraph.

Interactions with Other Chemicals

No reports of interactions or synergistic effects with other chemicals were found.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

TABLE 10-1 Toxicity Summary

Concentration, ppm

Exposure Duration

Species

Effects

Reference

0.25

Occupational (hospital)

Human

Hives, chest tightness, watery eyes

Charney, 1990

0.12

Occupational (hospital)

Human (n = 9)

Headache, rhinitis, watering of eyes, dermatitis, respiratory difficulty

Jachuck et al., 1989

0.12

Occupational (hospital)

Human

NOAEL for embryo toxicity and teratogenicity

Hemminki et al., 1982, 1985

8.1

Occupational (hospital)

Human

Hives, chest tightness, watery eyes

Charney, 1990

0.021

6 h/d, 5 d/w, 14 w

Rat

Transient reduced body-weight gain

Ballantyne, 1986

0.049

6 h/d, 5 d/w, 14 w

Rat

Periocular and perinasal encrustation

Ballantyne, 1986

0.0625

6 h/d, 5 d/w, 13 w

Mouse

Mild-to-moderate inflammation of anterior nasal passages in female mice

Kiri, 1992

0.194

6 h/d, 5 d/w, 14 w

Rat

Periocular and perinasal encrustation

Ballantyne, 1986

0.63

6 h/d, 9 d

Rat

1 of 10 exposed males died

B. J. Greenspan, personal commun., 1992

1.6

6 h/d, 5 d/w, 2 w

Mouse

LC100 (necrosis, inflammation, and squamous metaplasia of nasal passages and larynx)

Kiri, 1992

2.1

6 h/d, 9 d

Rat

9 of 10 exposed males died

B. J. Greenspan, personal commun., 1992

2.1

6 h/d, 9 d

Rat

7 of 10 exposed females died

B. J. Greenspan, personal commun., 1992

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

Concentration, ppm

Exposure Duration

Species

Effects

Reference

24

4 h

Rat

LC50 for males

Ballantyne et al., 1985

33

24 h

Mouse

Toxic hepatitis

Varpela et al., 1971

40

4 h

Rat

LC50 for females

Ballantyne et al., 1985

2 to 11

6-8 h

Rat

Sensory irritation of eyes and respiratory tract

Ballantyne et al., 1985

5000

4 h

Rat

LC50

NIOSH, 1975

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

TABLE 10-2 Exposure Limits Set or Recommended by Other Organizations

Agency or Organization

Exposure Limit, ppm

Reference

ACGIH's STEL

0.2 (ceiling)

ACGIH, 1991

OSHA's PEL

0.2 (ceiling)

ACGIH, 1991

NIOSH's REL

0.2

ACGIH, 1991

Germany's MAK

0.2

ACGIH, 1991

STEL, short-term exposure limit; PEL, permissible exposure limit; REL, recommended exposure limit; MAK, maximum allowable concentration.

TABLE 10-3 Spacecraft Maximum Allowable Concentrations

Exposure Duration

Concentration, ppm

Concentration, mg/m3

Target Toxicity

1 h

0.12

0.49

Eye irritation, rhinitis, respiratory difficulty, headache

24 h

0.04

0.08

Eye irritation, rhinitis, respiratory difficulty, headache

7 da

0.006

0.024

Lesions of the respiratory tract

30 d

0.003

0.012

Lesions of the respiratory tract

180 d

0.0006

0.002

Lesions of the respiratory tract

a Previous 7-d temporary group SMAC for aliphatic aldehydes is 5 ppm (1.2 mg/m3). Previous 7-d temporary SMAC for glutaraldehyde is 0.1 ppm (0.4 mg/m3).

RATIONALE FOR ACCEPTABLE CONCENTRATIONS

To set SMACs for glutaraldehyde, acceptable concentrations (ACs) are set for each adverse effect or group of effects for each desired exposure duration, i.e. 1 h, 24 h, 7 d, 30 d, and 180 d. The ACs for the most sensitive adverse effects are set as the SMAC values for those exposure durations. Because of recent data that showed nasal lesions in rodents at very low glutaraldehyde concentrations, the ACs for respiratory tract lesions dominate the resulting SMACs, which are presented in Table 10-3.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Respiratory Difficulty, Rhinitis, Headache, Watering of the Eyes

Since about 1962, when 2% glutaraldehyde was introduced as a sterilizing solution (Stonehill et al., 1963), until about 1990, when the toxicity of glutaraldehyde was recognized, medical personnel had routinely worked with 2% glutaraldehyde solutions in open trays (Benson, 1984; Corrado et al., 1986; Burge, 1989). In a study by Jachuck et al. (1989), the atmospheric concentrations in the breathing zones of the workers measured 0.12 ppm (1-h sample). Such exposures produce some watering of the eyes, rhinitis, headache, and tightness of the chest. Thus, the 1-h AC for these end points was set equal to the lowest reported occupational exposure concentration that produced irritation (assumed to be for 8 h/d):

1-h AC = 0.12 ppm.

For the 24-h AC, the 0.12-ppm AC was reduced (divided by 3), because the degree of irritation tolerable for 8 h might become intolerable for 24 h. Thus,

24 h AC = 0.12 ppm/3 = 0.04 ppm.

For exposures lasting longer than 24 h, no irritation is acceptable; therefore, the 0.12-ppm lowest-observed-adverse-effect level (LOAEL) must be extrapolated to a NOAEL for irritation. To estimate a NOAEL, the ACs for the end points were set equal to one-tenth of the 0.12-ppm effect concentration. Experience has shown that these effects are threshold effects, rather than cumulative effects, such that below a certain concentration, no effects are seen, independent of the length of exposure.

7-d, 30-d, 180-d ACs = 0.12 ppm/10 = 0.012 ppm.

Lesions of the Respiratory Tract

In a recently published 13-w intermittent (6 h/d, 5 d/w) inhalation study in mice, 0.0625 ppm was a LOAEL for inflammation of the ante-

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

rior nasal passage from exposure to glutaraldehyde (Kiri, 1992). That exposure corresponds to 390 total hours of exposure or about 16 d of continuous exposure. To calculate a concentration that will protect against respiratory-tract lesions during a 7-d exposure, the 16-d LOAEL is divided by 10 to estimate a NOAEL. This 16-d NOAEL is not increased in extrapolating to an AC for 7 d. No adjustment is made for interspecies differences in susceptibility, because experience with formaldehyde has demonstrated that rodents are no less sensitive (Kerns et al., 1983) than humans and probably are more sensitive than humans to aldehyde-induced nasal lesions:

7-d AC = 0.0625 ppm/10 (LOAEL to NOAEL) = 0.006 ppm.

To calculate a concentration that will protect against respiratory-tract lesions during a 30-d exposure, the 16-d LOAEL is divided by 10 to estimate a NOAEL and multiplied by (16/30) to adjust for the longer exposure time:

30-d AC = 0.0625 ppm/10 (LOAEL to NOAEL) × (16 d/30 d)

= 0.003 ppm.

To calculate a concentration that will protect against respiratory-tract lesions during a 180-d exposure, the 16-d LOAEL is divided by 10 to estimate a NOAEL and multiplied by (16/180) to adjust for the longer exposure time:

180-d AC = 0.0625 ppm/10 (LOAEL to NOAEL) × (16 d/180 d)

= 0.0006 ppm.

Hepatitis

Using the 32-ppm 24-h exposure of mice, a 24-h AC for hepatitis can be set by applying factors of 10 for species differences and 10 to estimate a NOAEL from a LOAEL. Thus,

24-h AC = 32 ppm/10 (species)/10 (to NOAEL) = 0.32 ppm.

A 7-d AC can be calculated by dividing the 24-h AC by 7:

7-d AC = 0.32 ppm/7 = 0.05 ppm.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

SPACEFLIGHT CONSIDERATIONS

Of the end points induced by exposure to glutaraldehyde, none would be affected by launch, microgravity, or re-entry. Thus, no spaceflight factor was used in calculating any ACs.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

TABLE 10-4 Acceptable Concentrations

 

 

Uncertainty Factors

 

 

To NOAEL

 

 

Spaceflight

Acceptable Concentrations, ppm

Effect, Data, Reference

Species

Species

Time

1 h

24 h

7 d

30 d

180 d

Eye irritation, rhinitis, respiratory difficulty, headache;

Human

3

1

1

1

0.12

0.04

0.012

0.012

0.012

occupational exposure, 0.12

 

ppm (Jachuck et al., 1989)

 

Respiratory-tract lesions, LOAEL, 0.0625 ppm

Mouse

10

1

HR

1

-

-

0.006

0.003

0.0006

(Jachuck et al., 1989)

 

Hepatitis, LOAEL, 32 ppm, 24 h (Jachuck et al., 1989)

Mouse

10

10

HR

1

-

0.32

0.05

-

-

SMACs

 

 

 

 

 

0.12

0.04

0.006

0.003

0.0006

—, Data not considered applicable to the exposure time; HR, Haber's rule.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

REFERENCES

ACGIH. 1991. Guide to Occupational Exposure Values—1991. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio.

Anonymous. 1976. Human sensory irritation threshold of glutaraldehyde vapor. Report to Dr. N. A. Miner, Arbrook, Inc. Arlington, Tex.


Ballantyne, B. 1986. Review of toxicological studies and human health effects—Glutaraldehyde. Union Carbide Corporation, Danbury, Conn.

Ballantyne, B., R. H. Garman, B. J. Greenspan, and R. C. Myers. 1985. Acute toxicity and irritancy of glutaraldehyde. Toxicologist 5:204.

Bardazzi, F., M. Melino, G. Alagna, and S. Veronesi. 1986. Glutaraldehyde dermatitis in nurses. Contact Dermatitis 14(5):319-320.

Beauchamp, R. O. J., M. B. G. St. Claire, T. R. Fennell, D. O. Clarke, and K. T. Morgan. 1992. A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol. 22(3,4):143-174.

Behen, J. J. 1991. Letter to Martin Coleman, National Aeronautics and Space Administration, Johnson Space Center, Houston, Tex., from Union Carbide Chemicals and Plastics Co., Specialty Chemicals Division, Danbury, Conn.

Benson, W. G. 1984. Case Report: Exposure to glutaraldehyde. Occup. Med. 34(2):63-64.

Biophysics Research and Consulting Corporation. 1980. Sterilization Using a Gas Plasma. Belgian Patent No. 881138, May 2, 1980.

Burge, P. S. 1989. Occupational risks of glutaraldehyde. Br. Med. J. 299(6695):342.


Charney, W. 1990. Hidden Toxicities of Glutaraldehyde. Pp. 71-78 in Essentials of Modern Hospital Safety, W. Charney and J. Schirmer, eds. Chelsea, Mich.: Lewis Publishers.

Corrado, O. J., J. Osman, and R. J. Davies. 1986. Asthma and rhinitis after exposure to glutaraldehyde in endoscopy units. Hum. Toxicol. 5(5):325-328.


D'Ovidio, N. G., J. M. Jesseph, and H. H. LeVeen. 1981. Prevention of implantation cancer with dilution solutions of glutaraldehyde. Surg. Forum 32:429-431.

Di Prima, T., R. De Pasquale, and M. Nigro. 1988. Contact dermatitis from glutaraldehyde. Contact Dermatitis 19(3):219-220.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

Feigal, R. J., and H. H. Messer. 1990. A critical look at glutaraldehyde. Pediatr. Dent. 12(2):69-71.


Greenspan, B. J., B. Ballantyne, E. H. Fowler, and W. M. Snellings. 1985. Subchronic inhalation toxicity of glutaraldehyde [abstract]. Toxicologist 5:29.


Hemminki, K., K. Falck, and H. Vainio. 1980. Comparison of alkylation rates and mutagenicity of directly acting industrial and laboratory chemicals. Epoxides, glycidyl ethers, methylating and ethylating agents, halogenated hydrocarbons, hydrazine derivatives, aldehydes, thiuram, and dithiocarbamate derivatives. Arch. Toxicol. 46(3-4):277-285.

Hemminki, K., P. Kyyroenen, and M. Lindbohm. 1985. Spontaneous abortions and malformations in the offspring of nurses exposed to anesthetic gases, cytostatic drugs, and other potential hazards in hospitals, based on registered information of outcome. J. Epidemiol. Commun. Health 39:141-147.

Hemminki, K., P. Mutanen, I. Saloniemi, M. L. Niemi, and H. Vainio. 1982. Spontaneous abortions in hospital staff engaged in sterilizing instruments with chemical agents. Br. Med. J. 285:1461-1463.


Jachuck, S. J., C. L. Bound, J. Steel, and P. G. Blain. 1989. Occupational hazard in hospital staff exposed to 2 per cent glutaraldehyde in an endoscopy unit . J. Soc. Occup. Med. 39(2):69-71.

Jordan, W. P., Jr., M. Dahl, H. L. Albert. 1972. Contact dermatitis from glutaraldehyde. Arch. Dermatol. 105:94-95.

Jung, R., G. Engelhart, B. Herbolt, R. Jäckh, and W. Müller. 1992. Collaborative study of mutagenicity with Salmonella typhimurium TA102. Mutat. Res. 278(4):265-270.


Kennedy, G. L., Jr., and G. J. Graepel. 1991. Acute toxicity in the rat following either oral or inhalation exposure. Toxicol. Lett. 56(3):317-326.

Kerns, W. D., K. L. Pavkov, D. J. Donofrio, E. J. Gralla, and J. A. Swenberg. 1983. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res. 43:4382-4392.

Ketley, C. E., and J. R. Goodman. 1991. Formocresol toxicity: Is there a suitable alternative for pulpotomy of primary molars? Int. J. Paediatr. Dent. 1(2):67-72.

Kiri, F. W. 1992. Draft NTP Technical Report on Toxicity Studies of Glutaraldehyde (CAS No. 111-30-8) Administered by Inhalation to F344/N Rats and B6C3F1 Mice. National Institutes of Health, Na-

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

tional Toxicology Program, Research Triangle Park, N.C.

Lahav, R. 1977. Sterilization by immersion in chemical solutions. Harokeach Haivri 20(Sept):161-162.

Leinster, P., J. M. Baum, and P. J. Baxter. 1993. An assessment of exposure to glutaraldehyde in hospitals: Typical exposure levels and recommended control measures. Br. J. Ind. Med. 50:107-111.


Marhold, J. V. 1972. Sbornik Vysledku Toxikologickeho Vysetreni Latek A Pripravku, Institut Pro Vychovu Vedoucicn Pracovniku Chemickeho Prumyclu Praha.

Marks, T. A., W. C. Worthy, and R. E. Staples. 1980. Influence of formaldehyde and Sonacide (potentiated acid glutaraldehyde) on embryo and fetal development in mice. Teratology 22(1):51-58.

McGregor, D. B., A. Brown, P. Cattanach, I. Edwards, D. McBride, and W. J. Caspary. 1988. Responses of the L5178Y tk+/tk-mouse lymphoma cell forward mutation assay II. 18 Coded chemicals. Environ. Mol. Mutagen. 11(1):91-118.


Nethercott, J. R., and D. L. Holness. 1988a. Contact dermatitis in funeral service workers . Contact Dermatitis 18(5):263-267.

Nethercott, J. R., D. L. Holness, and E. Page. 1988b. Occupational contact dermatitis due to glutaraldehyde in health care workers. Contact Dermatitis 18(4): 193-196.

NIOSH. 1987. Pp. 2528-2529 in Registry of Toxic Effects of Chemical Substances (RTECS), Vol. 3. Publ. No. 87-114. National Institute for Occupational Safety and Health, Cincinnati, Ohio.

NIOSH. 1991. Carcinogenicity of Acetaldehyde and Malondialdehyde, and Mutagenicity of Related Low-molecular Weight Aldehydes. National Institute for Occupational Safety and Health, Cincinnati, Ohio.


Ranly, D. M., D. Horn, and G. B. Hubbard. 1989. Assessment of the systemic distribution and toxicity of glutaraldehyde as a pulpotomy agent. Pediatr. Dent. 11(1):8-13.

Reifenrath, W. G., S. D. Prystowsky, J. H. Nonomura, and P. B. Robinson. 1985. Topical glutaraldehyde-percutaneous penetration and skin irritation. Arch. Dermatol. Res. 277(3):242-244.


Sasaki, Y., and R. Endo. 1978. Mutagenicity of aldehydes in Salmonella typhimurium. Mutat. Res. 54(2):251-252.

Sax, N. I., ed. 1984. Dangerous Properties of Industrial Materials. New York: Van Nostrand Reinhold.

Slesinski, R. S., W. C. Hengler, P. J. Guzzie, and K. J. Wagner. 1983. Mutagenicity evaluation of glutaraldehyde in a battery of in vitro

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×

bacterial and mammalian test systems. Food Chem. Toxicol. 21:621-629.

St. Clair, M. B. G., E. Bermudez, E. A. Gross, B. E. Butterworth, and L. Recio. 1991. Evaluation of the genotoxic potential of glutaraldehyde. Environ. Mol. Mutagen. 18(2):113-119.

St. Clair, M. G., E. A. Gross, and K. T. Morgan. 1990. Pathology and cell proliferation induced by intranasal instillation of aldehydes in the rat: Comparison of glutaraldehyde and formaldehyde. Toxicol. Pathol. 18(3):353-361.

Stern, M. L., M. P. Holsapple, J. A. McCay, and A. E. Munson. 1989. Contact hypersensitivity response to glutaraldehyde in guinea pigs and mice. Toxicol. Ind. Health 5(1):31-43.

Stonehill, A. A., S. Krop, and P. M. Borick. 1963. Buffered glutaraldehyde-A new sterilizing chemical solution. Am. J. Hosp. Pharm. 20:458.

Tallant, M. J., S. W. Frantz, and B. Ballantyne. 1990. Evaluation of the in vitro skin penetration of glutaraldehyde using the rat, mouse, rabbit, guinea pig, and human skin [abst. 1022]. Toxicologist 10:256.

Tamada, M., S. Sasaki, Y. Kadono, S. Kato, M. Amitani, Y. Ogasahara, T. Tamura, and N. Sato. 1978. Mutagenicity of glutaraldehyde in mice. Bokin Bobai 6(2):62-68.


Varpela, E., S. Otterström, and R. Hackman. 1971. Liberation of alkalinized glutaraldehyde by respirators after cold sterilization. Acta Anaesthesiol. Scand. 15:291-298.


Wiggins, P., S. A. McCurdy, and W. Zeidenberg. 1989. Epistaxis due to glutaraldehyde exposure. J. Occup. Med. 31(10):854-856.

Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 271
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 272
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 273
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 274
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 275
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 276
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 277
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 278
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 279
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 280
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 281
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 282
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 283
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 284
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 285
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 286
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 287
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 288
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 289
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 290
Suggested Citation:"B10: Glutaraldehyde." National Research Council. 1996. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3. Washington, DC: The National Academies Press. doi: 10.17226/5435.
×
Page 291
Next: B11: Trichloroethylene »
Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3 Get This Book
×
 Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 3
Buy Paperback | $70.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The National Aeronautics and Space Administration (NASA) has measured numerous airborne contaminants in spacecraft during space missions because of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions.

This volume reviews the spacecraft maximum allowable concentrations (SMACs) for various contaminants to determine whether NASA's recommended exposure limits are consistent with recommendations in the National Research Council's 1992 volume Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!