which inorganic neutral phosphate was added to the diet, and of Heaney and Recker (1982), who studied women on their habitual intakes of food phosphorus, even Ca:P ratios as low as 0.08:1 did not lower calcium absorption. Nevertheless, it must be noted that it is more difficult for the body to compensate for impaired calcium absorption at low dietary calcium intakes compared with higher intakes (Heaney, 1997). As prior expert panels have noted (Chinn, 1981), even the theoretical potential for interference with the calcium economy by high phosphorus intakes is effectively negated if calcium intake is adequate.

Dose-Response Assessment
Adults: Ages 19 through 70 Years

Data Selection. A UL can be defined as an intake associated with the upper boundary of adult normal values of serum Pi. No reports exist of untoward effects following high dietary phosphorus intakes in humans. Essentially all instances of dysfunction (and, hence, all instances of hyperphosphatemia) in humans occur for nondietary reasons (for example, end-stage renal disease, vitamin D intoxication). Therefore, data on the normal adult range for serum Pi are used as the basis for deriving a UL for adults.

Identification of a No-Observed-Adverse-Effect Level (NOAEL) (or Lowest-Observed-Adverse-Effect Level [LOAEL]) and Critical Endpoint. If the normal adult range for serum Pi is used as a first approach to estimating the UL, the upper boundary of adult normal values of serum Pi is reached at a daily phosphorus intake of 3.5 g (113 mmol) (Figure 5-1). There is no evidence that individuals consuming this intake may experience any untoward effects. As shown in Table 5-1, infants, children, and adolescents have higher upper limits for serum Pi than do adults, which indicates that their tissues tolerate the higher Pi levels well. Values of Pi above the nominal adult human normal range are also normally found in typical adult laboratory animals (for example, rats) and occur regularly in adult humans treated with the bisphosphonate, etidronate, used for the treatment of Paget's disease of the bone and osteoporosis (Recker et al., 1973). No suggestion of harm comes from any of these situations, indicating that the UL is substantially higher than that associated with the upper normal bound of serum Pi in adults.

The higher values for serum Pi in infancy are manifestly tissue-safe levels, and if they are taken as an approximation of the upper normal

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement