knowing and from other bodies of knowledge through the use of empirical standards, logical arguments, and skepticism, as scientists strive for the best possible explanations about the natural world.

Scientific explanations must meet certain criteria. First and foremost, they must be consistent with experimental and observational evidence about nature, and must make accurate predictions, when appropriate, about systems being studied. They should also be logical, respect the rules of evidence, be open to criticism, report methods and procedures, and make knowledge public. Explanations on how the natural world changes based on myths, personal beliefs, religious values, mystical inspiration, superstition, or authority may be personally useful and socially relevant, but they are not scientific.

Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. The core ideas of science such as the conservation of energy or the laws of motion have been subjected to a wide variety of confirmations and are therefore unlikely to change in the areas in which they have been tested. In areas where data or understanding are incomplete, such as the details of human evolution or questions surrounding global warming, new data may well lead to changes in current ideas or resolve current conflicts. In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest.

Historical Perspectives

In history, diverse cultures have contributed scientific knowledge and technologic inventions. Modern science began to evolve rapidly in Europe several hundred years ago. During the past two centuries, it has contributed significantly to the industrialization of Western and non-Western cultures. However, other, non-European cultures have developed scientific ideas and solved human problems through technology.

Usually, changes in science occur as small modifications in extant knowledge. The daily work of science and engineering results in incremental advances in our understanding of the world and our ability to meet human needs and aspirations. Much can be learned about the internal workings of science and the nature of science from study of individual scientists, their daily work, and their efforts to advance scientific knowledge in their area of study.

Conclusion

The material addressing evolution in the National Science Education Standards is embedded within the full range of content standards describing what students should know, understand, and be able to do in the natural sciences. Used in conjunction with standards for other parts of the science education system, the content standards—and their treatment of evolution—point toward the levels of scientific literacy needed to meet the challenges of the twenty-first century.

NOTES

1.  

National Research Council. 1996. National Science Education Standards. Washington, DC: National Academy Press. www.nap.edu/readingroom/books/nses

2.  

American Association for the Advancement of Science. 1993. Benchmarks for Science Literacy. Project 2061. New York: Oxford University Press. www.aaas.org

3.  

National Science Teachers Association. 1993. Scope, Sequence, and Coordination of Secondary School Science. Vol. 1. The Content Core: A Guide for Curriculum Designers. rev. ed. Arlington, VA: NSTA. www.nsta.org



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement