tive because of the very great differences in the analytical capabilities that can be brought to bear in orbit and in the laboratory setting.

Although it would be difficult to justify human exploration of NEOs on the basis of cost-benefit analysis of scientific results alone, a strong case can be made for starting with NEOs if the decision to carry out human exploration beyond low Earth orbit is made for other reasons. Some NEOs are especially attractive targets for astronaut missions because of their orbital accessibility and short flight duration. Because they represent deep-space exploration at an intermediate level of technical challenge, these missions would also serve as stepping stones for human missions to Mars. Human exploration of NEOs would provide significant advances in observational and sampling capabilities.

The Committee on Planetary and Lunar Exploration (COMPLEX) has considered appropriate baseline research efforts, as well as a number of augmentations to existing programs for the discovery and characterization of NEOs. With respect to ground-based telescopic studies, the recommended baseline is that NASA and other appropriate agencies support research programs for interpreting the spectra of near-Earth objects (NEOs), continue and coordinate currently supported surveys to discover and determine the orbits of NEOs, and develop policies for the public disclosure of results relating to potential hazards. Augmentations to this baseline program include, in priority order, that relevant organizations do the following:

  1. Provide routine or priority access to existing ground-based optical and infrared telescopes and radar facilities for characterization of NEOs during favorable encounters, or
  2. Provide expanded, dedicated telescope access for characterization of NEOs.
  3. The baseline recommendation with respect to laboratory studies and instrumentation is that NASA and other appropriate agencies should support continued research on extraterrestrial materials to understand the controls on spectra of NEOs and the physical processes that alter asteroid and comet surface materials. An appropriate augmentation to this baseline is to support the acquisition and development of new analytical instruments needed for further studies of extraterrestrial materials and for characterization of returned NEO samples.

    Spacecraft missions and the development of the associated technology and instrumentation are essential components of any program for the study of NEOs. The baseline recommendation in this area is to support NEO flyby and rendezvous missions. Appropriate augmentations include, in priority order, the following:

    1. Develop technological advances in spacecraft capabilities, including nonchemical propulsion and autonomous navigation systems, low-power and low-mass analytical instrumentation for remote and in situ studies, and multiple penetrators and other sampling and sample-handling systems to allow low-cost rendezvous and sample-return missions.
    2. Study technical requirements for human expeditions to NEOs.
    3. Although studies evaluating the risk of asteroid collisions with Earth and the means of averting them are desirable, they are beyond the scope of this report.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement