National Academies Press: OpenBook

Drinking Water and Health, Volume 9: Selected Issues in Risk Assessment (1989)

Chapter: Appendix B: A Model Illustrating Synergism

« Previous: Appendix A: An Approach for Risk Assessment of Volatile Organic Chemicals in Drinking Water That Uses Experimental Inhalation Data and a Physiologically Based Pharmacokinetic Model
Suggested Citation:"Appendix B: A Model Illustrating Synergism." National Research Council. 1989. Drinking Water and Health, Volume 9: Selected Issues in Risk Assessment. Washington, DC: The National Academies Press. doi: 10.17226/773.
×
Page 175
Suggested Citation:"Appendix B: A Model Illustrating Synergism." National Research Council. 1989. Drinking Water and Health, Volume 9: Selected Issues in Risk Assessment. Washington, DC: The National Academies Press. doi: 10.17226/773.
×
Page 176

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

APPENDIX B A Model Illustrating Synergism The practical significance of synergism might be considered in a simple mathematical function based on exposure and magnitude of effect. Nearly all the data available on interactions come from observations based on high experimental or therapeutic doses. Drinking water standards are predicated on low-dose exposures, conditions under which the synergism data might not be duplicated. Although empirical data are lacking, some formal statistical models of the impact of joint exposure suggest that, as the dose (and the consequent effect) is reduced, the contribution of interaction to total toxicity or action is disproportionately attenuated. A simple mathematical model should help to make clear how this might happen. This model is intended solely to be illustrative. The subcommittee does not advocate the unquestioned use of this model, nor does it suggest that it necessarily reflects the type of response to exposure to a mixture. Suppose that the magnitudes of toxicity can be described by Equation T= Bo + B1X! + B2x2 + BI2XLX2, (1) where T is average toxicity, Bo is background, BY is relative effect of agent 1, B2 is relative effect of agent 2, By is "interaction" effect, and x~ and x2 are concentrations of agents 1 and 2, respectively. Consider the following two exposure patterns: High: x~ = 5, x2 = 10 Low: x~ = 0.5, x2 = 1.0. 175

176 DRINKING WATER AND HEALTH Assume that Be = 10, BY = 7, B2 = 5, and BE = 0.3. Then, the total effect at a high dose with an interaction would be 110 and without an interaction would be 95. At a lower dose, total toxicity with an interaction would be 18.65 and without an interaction would be 18.5. Thus, at high doses, the interaction makes an important contribution (about 15%) to the toxicity. At low doses, the interaction contribution is only 0.8%.

Next: Appendix C: Models of Response: Dose Additivity and Response Additivity »
Drinking Water and Health, Volume 9: Selected Issues in Risk Assessment Get This Book
×
 Drinking Water and Health, Volume 9: Selected Issues in Risk Assessment
Buy Paperback | $60.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The National Research Council closes the landmark series Drinking Water and Health with Volume 9, published in two parts:

Part I: DNA Adducts provides an overview of DNA adducts and their effects on human health, explores the techniques currently in use for detecting them, offers an outlook on future toxicity testing, and lists specific recommendations for action.

Part II: Mixtures explores the issues surrounding multiple-chemical exposure from drinking water and reviews options for grouping compounds so their toxicity in mixtures can be reliably assessed. The book describes alternative approaches and considers the option of developing a modified "hazard index" for chemical compounds.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!