National Academies Press: OpenBook
« Previous: B 6: Hydrogen
Suggested Citation:"B 7: Methane." National Research Council. 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1. Washington, DC: The National Academies Press. doi: 10.17226/9062.
×
Page 143
Suggested Citation:"B 7: Methane." National Research Council. 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1. Washington, DC: The National Academies Press. doi: 10.17226/9062.
×
Page 144
Suggested Citation:"B 7: Methane." National Research Council. 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1. Washington, DC: The National Academies Press. doi: 10.17226/9062.
×
Page 145
Suggested Citation:"B 7: Methane." National Research Council. 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1. Washington, DC: The National Academies Press. doi: 10.17226/9062.
×
Page 146
Suggested Citation:"B 7: Methane." National Research Council. 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1. Washington, DC: The National Academies Press. doi: 10.17226/9062.
×
Page 147
Suggested Citation:"B 7: Methane." National Research Council. 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1. Washington, DC: The National Academies Press. doi: 10.17226/9062.
×
Page 148

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

B7 Methane Hector D. Garcia, Ph.D., and John T. James, Ph.D. Johnson Space Center Toxicology Group Biomedical Operations and Research Branch Houston, Texas PHYSICAL AND CHEMICAL PROPERTIES Methane is a colorless, odorless, nonpoisonous, flammable gas that burns with a pale, faintly luminous flame. Methane is soluble in alcohol, ether, and other organic solvents and is slightly soluble in water (Sax, 1984; Budavari, 1976). It forms explosive mixtures with air and reacts violently with halogens, interhalogens, and oxidizers when exposed to heat or flame (Sax, 1984). Formula: CH4 CAS number: 74-82-8 Synonyms: Natural gas, marsh gas, firedamp, methyl hydride Molecular weight: 16.04 Boiling point: -161.4°C Melting point: -182.6°C Density: 0.554 (air = 1) or 0.7168 g/L Vapor pressure: 40 mm Hg at -86.3°C Explosion limits: 5.3-14% in air (Sax, 1984) Atmospheric concentration: 0.00022% by volume (Budavari, 1976) Autoignition temperature: 650°C 143

144 SMACS FOR SELECTED AIRBORNE CONTAMINANTS OCCURRENCE AND USE Methane occurs naturally as a product of decaying vegetable matter. In population studies, 35-61 % of healthy human subjects have detectable methane in their breath (Segal et al., 1988). It is used as a fuel for illumi- nating and cooking; in organic syntheses; and in the manufacture of hydrogen, hydrogen cyanide, ammonia, acetylene, and formaldehyde. PHARMA CO KINETICS Methane installed into the human colon is exhaled (Bjorneklett and Jenssen, 1982). Inhalation of commercial natural gas scented with 16.8 mg/m3 tert-butylmercaptan and 7.2 mg/m3 of methyl acrylate by mice in a gas chamber for 2 h produced isopropanol, acetone, sec-butyl alcohol, and methyl ethyl ketone in the blood and liver (Tsukamoto et al., 1985). Even though the authors considered these substances to be metabolites of the natural gas, the study did not distinguish between metabolism of the meth- ane and metabolism of the added fragrance compounds. The authors also stated that methane (and propane) "can exert an anesthetic effect on ani- mals even when sufficient oxygen exists, the results sometimes proving lethal" (Tsukamoto et al., 1985); however, they gave no citation for that report. No studies supporting this assertion were found. TOXICITY SUMMARY Methane is a simple asphyxiant and does not produce general systemic effects (Klaassen et al., 1986). Studies of the morphology of lung tissues of rats exposed to 8% methane, 20% oxygen for 1 h, followed by 100% methane found no effects attributable to the chemical specificity of methane but only to the decrease of oxygen (Morita and Tabata, 1988). Although patients with large bowel cancer have been found to have high levels of methane in their breath, no relationship has been found between in vivo production of methane and the risk of developing large bowel cancer (Segal et al., 1988; Flick et al., 1990). No studies on the effects of chronic inhalation of methane were found in the literature. The bowel cancer studies, however, found that outwardly healthy subjects had breath methane

METHANE 145 levels of up to 56 ppm, and in some people, methane (presumably gener- ated by fecal microorganisms) is present in colonic gases but is not ex- creted in the breath (McKay et al., 1985). TABLE 7-1 Exposure Limits Set by Other Organizations Organization Concentration ACGIH's TLV None set for simple asphyxiants OSHA's PEL None set NIOSH'sREL None set NIOSH's IDLH None set TLV = threshold limit value. PEL = permissible exposure limit. REL = recommended exposure limit. IDLH = immediately dangerous to life and health. TABLE 7-2 Spacecraft Maximum Allowable Concentrations Duration ppm mg/m3 Target Toxicity 1h .5300 3800 0.1 X lower explosive limit 24h 5300 3800 0.1 X lower explosive limit 7d 5300 3800 0.1 X lower explosive limit 30d 5300 3800 0.1 X lower explosive limit 180 d 5300 3800 0.1 X lower explosive limit RATIONALE SMACs were set on the basis of methane's explosive properties rather than its toxicity with the following considerations. First, methane has no demonstrable toxicity and does not produce general systemic effects other than being a simple asphyxiant. Air at sea level contains about 21 % oxygen. Humans at rest are not significantly affected until the oxygen concentration falls to 14 %, but with exercise, anoxia develops quickly owing to the limited rate of diffusion of oxygen through the lung's alveolar walls (Rogan, 1972). Table 7-3 shows the relationship between exercise, oxygen saturation of the blood, and oxygen concentration in the atmosphere (Rogan, 1972).

146 SMACS FOR SELECTED AIRBORNE CONTAMINANTS TABLE 7-3 The Relationship Between Exercise and Oxygen Concentrations Oxl'.~en in Air at 760 mm H~, % Amount of Exercise 21 20 19 18 17 16 15 14 Resting 0 0 0 0 0 0 0 0 Walking 0 0 0 0 0 0 0 • Hurrying, moderate 0 0 0 0 0 • • • work Hea~ work 0 0 0 0 • • • • o = adequate oxygen saturation. • = desaturation likely (danger of rapid loss of consciousness). Even if an astronaut performed heavy work in an atmosphere containing a simple asphyxiant, Table 7-3 shows that a level of oxygen of about 18% would be adequate to prevent loss of consciousness. For methane to dilute the oxygen in the atmosphere to 18 % would require the methane concentra- tion to reach 14.3%: 0 21 -0· < ·0.21 18) = 0 143 = 143 000 · ' ppm. Second, as shown in Figure 7-1, 14% methane and 18% oxygen is capable of forming explosive mixtures if diluted slightly with air. If the atmosphere contains an appreciable amount of hydrogen, the Coward's triangle will have a different shape, and explosions can occur with a lower percentage of oxygen. The shape of the triangle can also be varied by high concentrations of carbon monoxide (Rogan, 1972). Thus, before increasing methane concentrations could reach asphyxiat- ing levels, methane would form explosive mixtures with air. Also, if provision is made for maintaining 21 % oxygen in the spacecraft by injec- tion of pure oxygen, the assumption, based on Coward's triangle, is made that the lower-explosive-limit concentration of methane would not change appreciably. Therefore, SMACs were set at one-tenth the lower explosive limit of 5.3% methane. A safety factor of 10-fold below the explosive limit was used to allow for some inhomogeneities in the local distribution of methane near the site of leakage or generation of the methane, assuming that air circulation within the spacecraft produces moderately effective mixing.

METHANE 147 Mixture which cannot be 20 1--t--+--+=~...1:::--+--+-+--+- and produced from methane air unless oxygen is added Capable of forming explosive mixtures if diluted with air 8 6 Not capable of forming an explosive mixture 4 with air 2 4 6 8 10 12 14 16 18 20 METHANE% FIGURE 7-1 The explosive limits of methane-Coward's Triangle. REFERENCES Bjorneklett, A. and E. Jenssen. 1982. Relationships between hydrogen (H2 ) and methane (CH 4) production in man. Scand. J. Gastroenterol. 17:985-992. Budavari, S., ed. 1976. P. 938 in The Merck Index, 11th Edition. Merck & Co., Rahway, N.J. Flick, J.A., S.R. Hamilton, F.J. Rosales, and J.A. Perman. 1990.

148 SMACS FOR SELECTED AIRBORNE CONTAMINANTS Methane excretion and experimental colonic carcinogenesis. Digestive Dis. Sci. 35:221-224. Klaassen, C.D., M.O. Amdur, and J. Doull, eds. 1986. P. 658 in Casarett and Doull's Toxicology, 3rd Edition. Macmillan, New York. McKay, L.F., M.A. Eastwood, and W.G. Brydon. 1985. Methane excretion in man-A study of breath, flatus, and faeces. Gut 26:69-74. Morita, M. and N. Tabata. 1988. Studies on asphyxia: On the changes of the alveolar walls of rats in the hypoxic state. II. The hypoxic state produced by carbon dioxide and methane gases. Forensic Sci. Int. 39:257-262. Sax, NJ., ed. 1984. Pp. 1762-1763 in Dangerous Properties oflndustrial Materials, 6th Edition. Van Nostrand Reinhold, New York. Segal, I., A.R.P. Walker, S. Lord, and J.H. Cummings. 1988. Breath methane and large bowel cancer risk in contrasting African populations. Gut 29:608-613. Tsukamoto, S., S. Chiba, T. Ishikawa, and M. Shimamura. 1985. Ex- perimental study on the metabolism of volatile hydrocarbons by inhala- tion of natural gas (13 A-Tokyo Gas). Nihon Univ. J. Med. 27:33-38. Rogan, J.M., ed. 1972. Pp. 224-227 in Medicine in the Mining Indus- tries. William Heinemann Medical Books, London.

Next: B 8: Methanol »
Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 1 Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!