Cover Image

PAPERBACK
$43.50



View/Hide Left Panel

A polysaccharide-based vaccine for H. influenzae type b was licensed in the United States in April 1985. An improved vaccine is desirable for the reasons discussed in the last section of this appendix.

PATHOGEN DESCRIPTION

Noncapsulated H.influenzae strains, although common, are largely avirulent. There are six serotypes of H. influenzae with immunochemically distinct capsular polysaccharides (Egan et al., 1982). They are identified as types a, b, c, d, e, and f. Almost all invasive H. influenzae disease is caused by type b (Norden, 1982). Thus, a vaccination program can be directed against a single type.

Studies on the noncapsular surface antigens of H. influenzae type b in several laboratories have revealed a number of distinct strains within type b (Hansen et al., 1982a; Loeb and Smith, 1980). The relative prevalence of these different strains as a cause of disease varies with geographic locale. More than 20 different subtypes have been identified, but 5 or 6 account for most H. influenzae type b illness (Hansen et al., 1982a; Loeb and Smith, 1980). Subtyping is primarily of epidemiologic value, because all type b strains are killed by anti-type b polysaccharide antibodies. The type b polysaccharide has been purified and its structure determined. The repeating unit is → 3)-β-D-ribose-(1 → 1)-ribitol-5-phosphate.

HOST IMMUNE RESPONSE

Protection against invasive H. influenzae disease is due primarily to humoral immunity (Solotorovsky and Lynn, 1978). Protective antibodies are induced to both the capsular polysaccharide and major outer membrane surface proteins. Classic studies by Fothergill and Wright (1933) demonstrated an inverse relationship between the development of bactericidal antibodies and the age-related incidence of H. influenzae disease. The same inverse relationship has been demonstrated for antibodies directed against the type b capsular polysaccharide (Anderson et al., 1977).

Following the decline of maternally acquired immunity between 2 and 3 months of age, bactericidal antibodies generally are not detectable for about 3 years. They then rise slowly, reaching adult levels by about age 8. However, there is considerable individual variability in the pattern of antibody changes.

Clinical studies suggest a positive correlation between the presence of anti-type b antibodies and the relative absence of H. influenzae disease in children older than 5 years of age (Peltola et al., 1977). Passive protection studies in animals, primarily the infant rat, provide further evidence for the protective effects of antibodies against type b polysaccharide (Myerowitz and Norden, 1977).

There is strong evidence from the Finnish studies of the capsular polysaccharide (polyribophosphate) vaccine for the protective role of



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement