Research Council (Bransford et al., 1999), “in some cases there is evidence that teaching for understanding can increase scores on standardized measures (e.g., Resnick et al., 1991); in other cases, scores on standardized tests are unaffected, but the students show sizable advantages on assessments that are sensitive to their comprehension and understanding rather than reflecting sheer memorization (e.g., Carpenter et al., 1996; Secules et al., 1997)” (p. 177).

Research on effective learning and learning environments has interesting parallels to the process of scientific inquiry itself (Duschl, 1992). Both learner and scientist actively construct knowledge through confrontation with a new question, problem, or phenomenon, gathering information, and creating explanations. Throughout the process of inquiry, both constantly evaluate and reevaluate the nature and strength of evidence and share and then critique their explanations and those of others. A classroom in which students use scientific inquiry to learn is one that resembles those that research has found the most effective for learning for understanding. This consequence strengthens the argument for inquiry-based teaching.

RESEARCH ON INQUIRY-BASED SCIENCE TEACHING

The final line of research supporting the use of inquiry in teaching and learning involves the study of specific science programs. In the 1960s and 1970s, a number of curriculum projects, including the Biological Sciences Curriculum Study (BSCS) programs in biology, the Physical Sciences Study Committee (PSSC) materials in physics, and the Science Curriculum Improvement Study (SCIS) and Elementary Science Study (ESS) units for elementary school science, incorporated approaches to teaching and learning that today would fall, at least in part, under the heading of inquiry. The term “inquiry” was used explicitly in studies of various NSF-funded curriculum projects (Shymansky et al., 1983). These studies examined teaching techniques such as “inquiry-discovery” (Wise and Okey, 1983), project-based science instruction (Blumenfeld, 1994; Krajcik et al., 1994; Ladewski et al., 1994; Marx et al., 1994), and newer technology-enhanced curriculum (White and Frederiksen, in press). Although this research suffers from the lack of a shared, precise definition of inquiry, it is possible to look for patterns that show up across studies.

In the 1980s, several meta-analyses were done of the original research projects, in which the individual projects are re-analyzed as a whole to yield broader results than any one study alone can produce. In general, these meta-analyses show that inquiry-based teaching produces positive,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement