activities. They were making observations, manipulating materials, and conducting laboratory investigations. As a result, they were developing cognitive abilities, such as critical thinking and reasoning, as well as learning science content (Bredderman, 1982; Shymansky et al., 1983).

Those developing national standards were committed to including inquiry as both science content and as a way to learn science. Therefore, rather than simply extolling the virtues of “hands-on” or “laboratory-based” teaching as the way to teach “science content and process,” the writers of the Standards treated inquiry as both a learning goal and as a teaching method. The concept of inquiry thus appears in several different places in the Standards.


The content standards for Science as Inquiry include both abilities and understandings of inquiry (Tables 2-1, 2-2 and 2-3). The general standards for inquiry (Table 2-1) are the same for all three grade spans (K-4, 5-8, 9-12). The more detailed fundamental abilities of inquiry and fundamental understandings about inquiry increase in complexity from kindergarten through grade 12, reflecting the cognitive development of students (Tables 2-2 and 2-3).

Table 2-1. Content Standard for Science as Inquiry

As a result of activities in grades K-12, all students should develop

  • abilities necessary to do scientific inquiry.

  • understandings about scientific inquiry.

Abilities Necessary to Do Scientific Inquiry

Table 2-2 presents the key abilities from the inquiry standards. These “cognitive abilities” go beyond what have been termed science “process” skills, such as observation, inference, and experimentation (Millar and Driver, 1987). Inquiry abilities require students to mesh these processes with scientific knowledge as they use scientific reasoning and critical thinking to develop their understanding of science.

The basis for moving away from the traditional process approach is to encourage students to participate in the evaluation of scientific knowledge. At each of the steps involved in inquiry, students and teachers ought to ask “what counts?” What data do we keep? What data do we discard? What patterns exist in the data? Are these patterns appropriate for this inquiry? What explanations account for the patterns? Is one explanation better than another?

In justifying their decisions, stu-

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement