Cover Image

HARDBACK
$47.00



View/Hide Left Panel

cent measurements in the deep ocean, suggest that a description and an understanding of the spatial distribution of turbulent mixing in the global ocean is achievable in the next decade. Unraveling the possible connections between the spatial and temporal distribution of mixing, the large-scale meridional overturning circulation, and climate variability are important aspects of this research.

Knowledge of the horizontal structure of the ocean on scales between the mesoscale (roughly 50 km) and the microscale (roughly less than 10 m) will be radically advanced and altered. The growing use of towed and autonomous vehicles, in combination with acoustic Doppler current profilers, will revolutionize our view of the ocean by exploring and mapping these almost unvisited scales throughout the global ocean. While this research is driven by interdisciplinary forces (biological processes and variability are active on these relatively small horizontal scales) it is also a new frontier for physical oceanography, and one in which even present technology enables ocean observers to obtain impressive data sets.

Numerical Modeling as an Integrative Tool

Large-scale numerical models of the ocean, and of the coupled ocean-atmosphere, are becoming the centerpiece of our science. This is not to say that numerical models dominate our science, but rather that results of theory and observational data are often cast into the form of numerical models. This happens either through data assimilation or through process-model explorations of theoretical ideas. Yet the fundamental difficulty of computer modeling remains: the ocean has, in its balanced circulation, energy-containing eddies of such small scale (less than 100 km) that explicit resolution of these dominant elements is marginally possible. Compounding this difficulty are the unbalanced, three-dimensional turbulent motions that are known to be important in select areas, such as the sites of open ocean convection.

We now have a well-acknowledged list of subregions of general circulation models that are greatly in need of improvement. These include: deep convection; boundary currents and benthic boundary layers; the representation of the dynamics and thermohaline variability of the upper mixed layer; fluxes across the air-sea interface; diapycnal mixing; and topographic effects. Progress in all of these areas is likely as our capacity for modeling smaller scale features increases, and as physically-based parameterizations are developed.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement