6
What Determines Susceptibility to Nutrient Over-Enrichment?

KEY POINTS IN CHAPTER 6

To plan effective strategies for managing coastal nutrient over-enrichment, managers need to understand how different types of estuaries respond to nutrient inputs. This chapter reviews the wide variety of processes controlling the susceptibility of coastal systems to nutrient enrichment and discusses existing approaches to estuarine classification that may be useful in assessing susceptibility. It finds:

  • a widely accepted estuarine classification scheme is a prerequisite for a systematic approach to extending lessons learned and successful management options from one estuary to others;

  • such a classification scheme should allow categorization of relatively poorly known systems on the basis of a minimum suite of measurements;

  • quantitative classifications that provide insights into the relative importance of the different factors controlling estuarine dynamics have the most potential for predictive analysis; and

  • a high priority should be the development of a national framework of “index sites” within which there would be an integration and coordination of environmental monitoring and research, with the goal of developing a predictive understanding of the response of coastal systems to both nutrient enrichment and nutrient reduction.

Coastal zone managers strive to accommodate human actions while minimizing negative impacts on coastal ecosystems. Successful management requires considerable information at a variety of levels, including an understanding of systems in their natural, pristine condition as well as how natural systems respond to human



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution 6 What Determines Susceptibility to Nutrient Over-Enrichment? KEY POINTS IN CHAPTER 6 To plan effective strategies for managing coastal nutrient over-enrichment, managers need to understand how different types of estuaries respond to nutrient inputs. This chapter reviews the wide variety of processes controlling the susceptibility of coastal systems to nutrient enrichment and discusses existing approaches to estuarine classification that may be useful in assessing susceptibility. It finds: a widely accepted estuarine classification scheme is a prerequisite for a systematic approach to extending lessons learned and successful management options from one estuary to others; such a classification scheme should allow categorization of relatively poorly known systems on the basis of a minimum suite of measurements; quantitative classifications that provide insights into the relative importance of the different factors controlling estuarine dynamics have the most potential for predictive analysis; and a high priority should be the development of a national framework of “index sites” within which there would be an integration and coordination of environmental monitoring and research, with the goal of developing a predictive understanding of the response of coastal systems to both nutrient enrichment and nutrient reduction. Coastal zone managers strive to accommodate human actions while minimizing negative impacts on coastal ecosystems. Successful management requires considerable information at a variety of levels, including an understanding of systems in their natural, pristine condition as well as how natural systems respond to human

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution activities (Karr and Chu 1997). Coastal waters are particularly complex because different types of estuaries, embayments, and shelf systems differ in their responses to nutrient enrichment. This means that varying levels of nutrient input can cause very different responses in different systems. This chapter examines classification schemes that could enhance attempts to understand, predict, and manage eutrophication and other impacts of nutrient over-enrichment in the nation’s coastal waters. It reviews existing and developing estuarine classifications. While the emphasis is on estuaries, where impacts of nutrient loading are most acute, the approach is equally appropriate for coastal systems in general, including those in the nearshore region of the continental shelf. The diverse physical settings (defined by a number of parameters including geology, soil type, climatic setting, and topology) of estuaries and their watersheds give rise to different types of estuarine systems. While there are numerous similarities between all estuaries, there are also some basic differences. For example, both a drowned river valley estuary, such as Chesapeake Bay, and a bar-built estuary, such as Plum Island Sound in northeastern Massachusetts, have temporal and spatial patterns of salinity that reflect seasonal variations in freshwater discharge. However, while Chesapeake Bay is a deep-water, plankton-dominated system where waters have a long residence time, Plum Island Sound is a shallow, emergent, marsh-dominated system where waters have a short residence time. The expected quantitative values for indicators of ecological health or for susceptibility to nutrient over-enrichment are not the same for these two systems, even though many of the same biological or ecological attributes may work as indicators in these disparate situations. Knowledge of the physical setting and the undisturbed ecosystem condition must underpin any monitoring and management effort to restore a coastal system impaired by nutrient over-enrichment. MAJOR FACTORS INFLUENCING ESTUARINE SUSCEPTIBILITY TO NUTRIENT OVER-ENRICHMENT Certain key characteristics appear to be of primary importance in determining estuarine response to nutrient enrichment. These factors range from biotic factors to physical setting to hydrodynamic regime. Twelve of the most important factors are: Physiographic setting. Characterization of the physiographic setting could include a geomorphic descriptor of an estuary (e.g., inverted continental shelf estuary like the Mississippi River plume, coastal embayment, and drowned river valley), a descriptor of the

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution major biological community(ies) (e.g., mangrove swamp, emergent marsh macrophyte, rocky intertidal, coral reef, and planktonic system), and a description of the biogeographic province as used by Hayden and Dolan (1976), Briggs (1974), and Gosner (1971). Physiographic setting largely determines the primary production base. Primary production base. The term primary production base refers to various primary producers that have unique temperature, substrate, light, and nutrient requirements and thus respond differently to nutrient loading. Susceptibility will vary across estuaries with different primary production bases. Examples of major types of primary producer communities include: emergent marshes and swamps, attached intertidal algae, benthic microalgae, drifting macroalgae, seagrasses, phytoplankton, and coral. Nutrient load. Nutrient load is the total amount of various nutrients contributed by the upstream landscape and atmosphere (Figure 6-1A&B). Coastal systems are among the most heavily loaded ecosystems on Earth. Even small nutrient losses per unit area of the terrestrial landscape become immense when scaled over the entire expanse of terrestrial watersheds. Dilution. Dilution of watershed-derived nutrients occurs due to a variety of mixing processes upon entry into an estuary. It makes a difference whether a given nutrient load is distributed over 1 km2 versus 1,000 km2 or mixed into 106 versus 1010 m3. Dilution is one of the dominant factors used to predict lake eutrophication, and Nixon (1992) showed a strong relationship between areal nutrient load, which partially accounts for dilution, and primary production in a wide variety of estuaries. Areal nutrient load is the magnitude of the nutrient load (e.g., kg yr−1) scaled to the surface area of the receiving estuary (e.g., m2, thus kg m−2 yr−1). More recently the National Oceanic and Atmospheric Administration (NOAA) has incorporated estimates of dilution into their susceptibility classifications, using dissolved concentration potential and estuarine export potential. Water residence time, TR, and flushing. Steady state conditions in a waterbody are affected by the fluxes into and out of the system. Residence time of water in an estuary or part of an estuary is an important temporal scale for relating physical phenomena to

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution FIGURE 6-1 As nutrient loading is increased over the range of globally observed levels, it is hypothesized that different types of estuaries differ in their susceptibility to eutrophication. (A) This figure shows hypothetical Dose-Response Curves for three major types of coastal systems: Salt Marsh Dominated Estuary (SME), Plankton Dominated Drowned River Valley Estuary (DRVE), Seagrass Dominated Estuary (SGE). At the lowest levels of nitrogen loading (0.01 to 0.01 moles N m−2 yr−1), each of the systems is likely to be oligotrophic (low level of productivity). Salt marsh estuaries are naturally more productive than seagrass dominated and plankton dominated drowned river valley estuaries. Seagrass dominated estuaries are likely to be the most sensitive to nutrient enrichment, shown by the rapid rise in eutrophication severity as nitrogen loading is increased from 0.1 to 1.0 moles N m−2 yr−1. Salt marsh estuaries are expected to be the least sensitive to nutrient enrichment, which is illustrated by the slow rise in eutrophication severity only after nitrogen loading exceeds 1.0 moles N m−2 yr−1 (unpublished figure by C. Hopkinson). ecological processes related to nutrient loading1 (Malone 1977; Cloern et al. 1983; Vallino and Hopkinson 1998; Howarth et al. 2000) (Box 6-1). For example, phytoplankton blooms can occur only when the plankton turnover time is shorter than the water 1   Many estuaries can be described as hypersaline (Chapter 5). Thus, some consideration was given to including salinity as one discriminator of estuarine class. However, because both dilution and water residence time play a role in determining salinity, it was felt that adding salinity as a specific discriminator of estuarine class would be redundant.

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution (B) Primary production by phytoplankton (14C uptake) as a function of the estimated rate of input of dissolved inorganic nitrogen (DIN) per unit area in a variety of marine ecosystems. The open circles are for large (13 m3, 5 m deep) well-mixed mesocosm tanks at the Marine Ecosystem Research Laboratory (MERL) during a multi-year fertilization experiment (Nixon et al. 1986; Nixon 1992). Natural systems (solid circles) are: (1) Scotian shelf, (2) Sargasso Sea, (3) North Sea, (4) Baltic Sea, (5) North Central Pacific, (6) Tomales Bay, California, (7) continental shelf off New York, (8) outer continental shelf off southeastern U.S., (9) Peru upwelling, (10) Georges Bank (modified from Nixon et al. 1996). residence time. If both water residence time and phytoplankton turnover time are one day, there is no chance of a bloom; algae are flushed from the system as fast as they multiply. Alternatively, if the residence time is seven days and phytoplankton turnover time is one day, phytoplankton can double seven times prior to being exported and an initial algal population of 5 μg chl-a l−1 can become a 640 μg l−1 bloom, given no other losses. There are other ecological processes whose time scales also can be compared to residence time to determine their potential influence on eutrophication. The

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution BOX 6-1 The Effect of Residence Time: The Hudson River Estuary as a Case Study Estuaries vary greatly in their susceptibility to eutrophication (Bricker et al. 1999). The Hudson River estuary receives extremely high inputs of nutrients, both from wastewater treatment plants in New York City and environs and from nonpoint sources in the watershed. However, several studies in the estuary during the 1970s showed fairly low rates of primary production (Malone 1977; Sirois and Fredrick 1978). The low production, despite high nutrients, resulted from short water residence times and perhaps light limitation from relatively deep mixing of the water column. During many summers in the 1990s, the freshwater discharge into the estuary was less than seen during the 1970s (Howarth et al. 2000). This increased the water residence time, increased the stratification in the estuary, and also led to greater water clarity due to less input of sediment and/or lessened resuspension of bottom sediments (Figure 6-2). Thus, not only did phytoplankton have longer to grow before being advected out of the estuary, but light limitation was lessened, increasing growth rates. The result is the estuary became much more productive. During many times in the 1990s, rates of production were high enough to classify the estuary as highly eutrophic (Howarth et al. 2000). Thus, climatic variation can make an estuary more or less susceptible to eutrophication. Future climate warming in the northeastern United States is likely to result in lessened freshwater discharge (Moore et al. 1997), aggravating eutrophication in the Hudson and similar estuaries with short water residence times (Howarth et al. 2000).

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution FIGURE 6-2 Relationship between freshwater discharge and (A) Gross Primary Productivity (GPP), (B) water residence time, (C) stratification, (D) and light penetration during 25 cruises conducted during the spring, summer, and fall of 1994, 1995, and 1997 in the Hudson River estuary. Squares represent times when tidal amplitude was less than 1.15 m; triangles represent greater tides. The dashed line in (A) indicates the approximate value for GPP above which an estuary is considered to be eutrophic. Note that high rates of GPP only occur when freshwater discharge is less than 200 m3 s−1, and are more likely when tidal amplitudes are low. Freshwater discharge data are from the USGS’s monitoring station at Green Island, New York (USGS 1999a). Discharge at Green Island constitutes approximately 67 percent of the total estimated freshwater input to the Hudson estuary and is well correlated with these total inputs (Howarth et al. 2000; used with permission from Springer-Verlag).

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution turnover time of organic nitrogen (i.e., conversion to inorganic nitrogen) in comparison to residence time can indicate whether this might be an important source of nitrogen fueling phytoplankton growth. For example, if residence time is seven days, organic nitrogen compounds with a lability (i.e., able to be decomposed or remineralized) or turnover time greater than 14 days are not likely to be remineralized to the inorganic form, and be available to phytoplankton while within the estuary. The fraction of total nitrogen input to estuaries from land and the atmosphere that is exported varies as a function of water residence time in the system, as is the fraction of input that is denitrified in estuaries (Nixon et al. 1996). NOAA has incorporated estimates of flushing in their development of an estuarine susceptibility index. Stratification. Stratification is an important physical process affecting eutrophication. Stratification can maintain phytoplankton in the nutrient rich, photic zone (Malone 1977; Howarth et al. 2000) and isolate deeper waters from reaeration. Most hydrodynamic classifications include a measure of stratification intensity (Hansen and Rattray 1966). NOAA considers stratification to be an important component of their developing estuarine susceptibility index. Hypsography. Hypsography describes the relative areal extent of land surface elevation, and might be a useful indicator of estuarine susceptibility to nutrient enhanced eutrophication. Knowledge of the relationship between estuarine area and elevation/depth will indicate the percentage of area potentially colonizable by emergent marsh, intertidal flats, submerged aquatic vegetation, phytoplankton, macroalgae, etc. Overlaid with measures of water turbidity and stratification, it might be possible to illustrate the spatial extent of sites potentially susceptible to a variety of eutrophication symptoms. Grazing of phytoplankton. Grazing by benthic filter feeders acts to clear particles from the water column, and can limit the accumulation of algal biomass (Cloern 1982). Alpine and Cloern (1992) showed that filter feeding benthos in San Francisco Bay effectively decreased the estuarine response to nutrient loading (in terms of phytoplankton production). There is some conjecture as to the importance of what were once vast filter feeding oyster populations in Chesapeake Bay and whether these acted to decrease the intensity of phytoplankton blooms in the past (Newell 1988). Zoo-plankton grazing can exert a strong influence on phytoplankton

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution blooms and eutrophication symptoms in lakes, but this phenomenon remains relatively unexplored in coastal systems (Ingrid et al. 1996). Likewise, the feeding activity of top predators, which can “cascade” down to influence zooplankton sizes, abundances, and grazing pressure on phytoplantkon in estuaries (Carpenter and Kitchell 1993), remains poorly understood. Suspended materials load and light extinction. Suspended load and light are two important factors related to nutrient over-enrichment (Box 6-2). Light is a primary factor controlling primary production. Researchers have shown that light can play a critical role in determining the response of estuarine systems to nutrient loading (e.g., Cloern 1987, 1991, 1996, 1999). In northern San Francisco Bay, high turbidity from watershed sediment erosion reduces light levels to such an extent that primary production is light-limited year round. A new conceptual model of coastal eutrophication (Cloern 1999) suggests that it is the interaction of nutrient loading and other stressors/factors that determines estuarine response. Denitrification. Denitrification is the process whereby nitrate is converted to gaseous nitrogen and N2O, and thereby made biologically unavailable. Denitrification provides a sink for nitrogen in estuarine systems; it essentially counteracts allochthonous nutrient inputs to estuaries and thereby can reduce eutrophication responses. Denitrification has been shown to be proportional to the rate of organic nitrogen remineralization in sediments (Seitzinger 1988), which is coupled with the magnitude of primary production that is oxidized by the benthos (Nixon 1981; Seitzinger and Giblin 1996). The relationship between denitrification and eutrophication is not simply linear. There are potential indirect effects of eutrophication that limit denitrification. For example, bottom water anoxia limits nitrification and hence denitrification in sediments and bottom waters. High sulfide concentrations, which are also associated with anoxic conditions, inhibit nitrification as well (Joye and Hollibaugh 1995). Knowledge of the magnitude of denitrification can help predict the eutrophication response of an estuary because nitrogen that is denitrified is largely unavailable to support primary production. Spatial and temporal distribution of nutrient inputs. Distribution of nutrient inputs varies along the expanse of an estuary (Vallino and Hopkinson 1998). The potential effect of nutrient

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution BOX 6-2 An Index of Susceptibility for Estuarine Phytoplankton Communities The quantity of nutrients into an estuarine system is not the only factor affecting susceptibility. Many estuaries maintain low algal biomass and low primary production under nutrient-rich conditions, such as North San Francisco Bay. How is it that some highly nutrient loaded systems do not show symptoms of eutrophication? Through research aimed at understanding the mechanisms controlling bloom dynamics in the San Francisco Bay system, Dr. James Cloern and colleagues at the U.S. Geological Survey (USGS) in Menlo Park, California, have developed an index of the sensitivity of a particular estuarine system to changes in nutrient concentration (Cloern 1999). The index is based on a model of phytoplankton population growth, where growth is the product of the carbon assimilation rate and the ratio of chlorophyll to carbon. The model includes functional responses of population growth to photosynthetic efficiency, light availability, temperature, photo-adaptation and nutrient availability. Because light energy can be a major resource that can and often does limit algal growth and production in estuarine ecosystems, a phytoplankton resource limitation plot, with light resource plotted against nutrient resource, indicates whether phytoplankton growth rate is more sensitive to changes in light or nutrients. Where the ratio of growth-rate sensitivity to light and nutrients, R, is greater than one (R>1) growth rate is strongly limited by light availability; ratios less than 1 (R<1) indicate strong nutrient limitation (Figure 6-3A&B). The boundary line between light and nutrient limitation shifts with changes in the physiological state of the phytoplankton. Thus it is possible to use measures of the light and nutrient resources in an estuary to make judgments about the relative strength of light and nutrient limitation over time and space. The light-nutrient limitation index is appealing for its simplicity. Using this approach, assessments of the sensitivity of an estuary to nutrient loading can be done using measurements of turbidity, light, and nutrient concentrations. The approach has been validated in applications to numerous estuaries in North America and Europe that demonstrate a range of temporal and spatial variations in the magnitude of nutrient and light limitation. Assessment results could be used to guide management strategies for individual systems. For instance, management strategies that emphasize nutrient reductions would be high priority in estuaries classified as nutrient sensitive; other strategies would be more important in estuaries classified as nutrient insensitive. The light-nutrient sensitivity index is but one tool available to assess and control the eutrophication threat to coastal ecosystems (Cloern 1999). Other important factors include the effects of residence time and phytoplankton grazing. Furthermore, the index gives no information about harmful algae, macroalgae, or seagrass epiphytes. Because of its simplicity, robustness, and ease of application, however, even with its limitations this index makes a significant contribution to developing a classification of estuarine sensitivity to nutrient enrichment that can be used to help manage nutrient over-enrichment problems.

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution FIGURE 6-3 Illustration of a classification that determines the relative importance of light and nutrients in controlling estuarine trophic state (Cloern 1999). Phytoplankton light and nutrient resource limitation can be calculated as the ratio (R) of growth-rate sensitivity to light and nutrients. (A) Large values of R (greater than 10) are resource combinations where growth rate is strongly limited by light availability: small values of R (less than 0.1) are regions of strong nutrient limitation. The line R = 1 defines the combinations of I’ and N’ for which growth rate is equally limited by light and nutrient resources. This figure was produced from interpolation of calculated values of R (used with permission from Kluwer Academic Publishers).

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution BOX 6-4 Determining which Estuaries are Naturally More Susceptible to Nutrient-Related Impacts: A Possible Approach Estuaries can be classified based on physical transport processes that, in part, determine their susceptibility to nutrient-related water quality conditions. An index to quantify the transport processes, EXP, was developed using physical and hydrologic data, assembled by NOAA’s National Ocean Service for 138 estuaries in the conterminous United States. As a first approximation, the EXP index classifies an estuary’s susceptibility to nutrient-related water quality concerns using two key physical factors: the dilution capacity of the water column and its flushing/retention time (as discussed earlier in this chapter, other factors can play an important role in determining susceptibility to eutrophication). Dilution capacity is determined by the volume of water available to dilute nutrient supplies. In vertically homogenous estuaries, the dilution volume is equal to the estuary volume. In contrast, for vertically stratified systems the dilution volume is limited to the upper layer of the water column. Flushing is the time required for freshwater inflow and tidal prism volume (modified by a re-entrainment coefficient) to replace the estuary volume. The index represents the average annual and system-wide conditions, providing an order-of-magnitude separation for the 138 coastal systems studied. Figure 6-5 provides some examples of results using this approach to classification. The results indicate that there are substantial differences among the 138 estuaries. Dilution volume ranges over five orders of magnitude and flushing time ranges just under five orders of magnitude. Systems with relatively large volumes and short flushing times, such as large river systems (e.g., Columbia and Mississippi Rivers) are less susceptible to eutrophication due to nutrient loading. Systems with moderate volumes and long flushing times, such as Chesapeake Bay, are more susceptible to eutrophication. One way to apply the susceptibility concept is to couple EXP with nutrient load estimates from each estuarine watershed (Figure 6-6). This provides a predicted nitrogen concentration in the water column that suggests, in a comparative sense, the potential for nutrient-related water quality symptoms. For example, higher nutrient concentrations imply the potential for more extreme expressions of nutrient-related symptoms. Coupling EXP with nutrient load estimates also has the potential to suggest how responsive the system may be to additional nutrient loads or nutrient abatement strategies. For example, estuaries in the upper left portion of Figure 6-6 would have to add or reduce comparatively more nutrients to affect water column concentrations than estuaries in the lower right. Likewise, this work may begin to describe how changes to an estuary’s physical environment could potentially alter its susceptibility to nutrient-related conditions. For example, the dilution or flushing components of EXP could be affected by alterations in freshwater inflow (e.g., diversions, impoundments, or consumptive loss) or tidal exchange (e.g., inlet modification, channel dredging).

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution FIGURE 6-5 Coastal systems can be classified according to their dilution and mixing capacities. Here, NOAA has classified 138 coastal systems of the United States according to dilution (volume of estuarine water above the pycnocline) and flushing (based on time to replace estuarine volume by freshwater inflow or tidal prism volume). Coastal systems falling in the lower left region of the graph are those with extremely large dilution volumes and short flushing times. We would expect these systems to be the least susceptible to nutrient-enhanced eutrophication. Systems in the upper right region of the graph have the smallest dilution volumes and longest flushing times. We would expect these systems to be very susceptible to eutrophication.

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution FIGURE 6-6 By coupling EXP (a measure of estuarine export potential) with an estimate of nitrogen load to each of 138 U.S. coastal systems (predicted from the USGS SPARROW model), it is possible to predict the average nutrient concentration in each system and hence its potential trophic state. Systems with a low nutrient load and low EXP (in the lower right region of the graph) are predicted to have the lowest nutrient concentrations. In contrast, those in the upper right should have the highest nutrient concentrations. NOAA is now in the process of comparing predicted nutrient concentration with measured trophic state as presented in the National Estuarine Eutrophication Assessment (Bricker et al. 1999). WQ stands for water quality. Lines of concentration indicate combinations of EXP and nutrient loading resulting in equal nitrogen concentrations. ability of EXP in single systems. These efforts, when coupled with efforts to model nutrient loading to estuaries and more rigorous quantification of tidal and stratification parameters should improve the capability to predict estuarine susceptibility to nutrient enrichment (Bricker et al. 1999). Most recently, NOAA has been addressing some of the deficiencies of the DCP index to incorporate measures of tidal flushing and stratification. Tidal flushing is addressed by incorporating a measure of the tidal prism into the overall flushing calculation, and stratification is addressed by

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution calculating dilution (for stratified systems) on the basis of the freshwater fraction rather than total estuarine volume. Using updated information on nitrogen loading, calculated using USGS’s Spatially Referenced Regressions on Watersheds (SPARROW) model and estuarine volumes, some patterns have been revealed in plots of revised DCP versus nitrogen load for many of the estuaries included in NOAA’s National Estuary Eutrophication Assessment survey (Bricker et al. 1999; Box 6-4). In this work, geographically and geomorphologically similar systems tended to cluster. For instance, estuaries in Maine fell out as a cluster as did large rivers, mid-Atlantic lagoons, and south-Atlantic marsh dominated estuaries. It is not obvious why these groupings occur, but this behavior may reflect similarities in stratification and circulation in local regions or it may reflect basic differences in physiography or primary production base (e.g., salt marsh dominated lagoons versus plankton dominated drowned river valleys). Initial comparisons to trophic state showed considerable deviations from predictions. For example, three clusters predicted to range from low to high susceptibility have been observed to be moderate to highly eutrophic. Again, an explanation for these patterns is not obvious and perhaps suggests further basic differences between various types of estuaries beyond that captured by measures of nutrient loading, dilution, and flushing. Perhaps a different set of rules governs the behavior of salt marsh and phytoplankton dominated estuaries. The DCP revisions summarized here represent preliminary results. They have not been thoroughly reviewed, but were presented to the committee to illustrate some of the directions NOAA’s National Ocean Service is pursuing to increase understanding of susceptibility to nutrient loading. NEXT STEPS NOAA’s DCP and EXP classification schemes are unique in that they were developed for the sole purpose of eutrophication understanding and prediction. However, neither of these schemes (including the revised DCP), have been tested rigorously to determine their ability to predict estuarine susceptibility to enhanced nutrient loading. Although physically based classification schemes have been useful in describing aspects of estuarine circulation, they have not been used systematically to understand responses to nutrient loading. For example, no classification scheme has been developed that encompasses the myriad of factors thought to be important eutrophication controls. While a statistical approach might be useful for identifying the suite of factors that best explain variability in eutrophication or other adverse impacts from nutrient over-enrichment across estuaries, such a relationship might not elucidate the actual mechanisms controlling eutrophication and thus we lose information perhaps

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution critical to managing and reversing eutrophication trajectories. Improved classifications need to be developed that can be generalized to a broader range of features and processes relevant to estuarine ecosystems, especially those affecting the susceptibility of various estuaries to nutrient over-enrichment. A Proposal to Select and Use Coastal Index Sites There are too many estuaries in the United States for the nation to conduct comprehensive ecosystem studies of all those affected by nutrient enrichment. Although the federal government conducts monitoring activities at more than 15,000 sites nationwide (Pryor et al. 1998), these efforts are not sufficiently coordinated to provide a predictive understanding of the causes and effects of nutrient enrichment. Because it is generally understood that different types of coastal systems differ in their response to nutrient enrichment, it would be extremely useful for managers to have a framework of dose-response curves for each of the major types of coastal systems. With such a tool, coastal managers could predict the effects of both increased and reduced nutrient inputs. Thus, a system is needed to classify coastal systems into a number of major types that are likely to respond similarly to nutrient enrichment. Resource managers could then apply these unique dose-response curves to their estuary’s particular conditions. When considering questions about how to improve the integration of environmental monitoring and research across the nation’s many existing networks and programs, the Environmental Monitoring Team of the Committee on Environment and National Resources (a committee of the Executive Office’s National Science and Technology Council; Pryor et al. 1998) produced a three-tiered conceptual framework describing how federal environmental monitoring activities can fit together. The first tier includes inventories and remote sensing; the second includes national and regional surveys; the third tier includes intensive monitoring and research sites, or “index sites.” The goal was to integrate activities across tiers and thus provide the understanding that will enable sound evaluation of the status, trends, and future of the environment. (This approach also is similar to one proposed by NOAA, the Environmental Protection Agency [EPA], and USGS in their draft coastal research and monitoring strategy.) The Committee on the Causes and Management of Coastal Eutrophication recommends adoption of this three-tiered framework as a way of better integrating monitoring and research in support of improved management of coastal ecosystems. Of primary importance, the committee suggests that monitoring and research be conducted at a sufficiently high spatial and temporal resolution at Tier III “index sites” to develop predic-

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution tive, cause-effect or dose-response models for the nation’s major types of coastal systems. The establishment of a national framework of index sites where monitoring and research are closely integrated would lead to the development of a predictive understanding of coastal system responses to anthropogenic activities, especially nutrient enrichment. At index sites, intensive monitoring and research activities would lead to a broad understanding of how and why estuaries respond as they do to nutrient inputs. Research should not be restricted to increased nutrient loading scenarios, but should also examine responses to nutrient loading reductions. We expect a different set of dose-response curves for nutrient reductions that would incorporate time lags, hystereses, and non-linear responses of biological systems. Predictive models would be developed at index sites. Index sites should be established for each of the major types of estuaries; we expect unique dose-response curves for each estuarine type. Examples of possible Tier III index sites would be the coastal long-term ecological research sites. Coastal long-term ecological research sites are funded by the National Science Foundation (NSF) at Plum Island Ecosystem in northern Massachusetts, Baltimore Ecosystem Study, Virginia Coast Reserve, Santa Barbara Channel, Everglades, and Georgia Coastal. Each estuarine type should possess a unique dose-response curve that relates primarily to variations in the major factors controlling estuarine susceptibility to nutrient over-enrichment (i.e., loading, dilution, and flushing). How best to identify the major types of coastal systems is elusive. Based on our analysis, this committee believes that a combination of physiographic province and primary production base could serve as the key criteria for selecting the major types of coastal systems. Following this thinking, and based on physiographic characteristics, the twelve major types of coastal systems are: open continental shelf (e.g., Georgia Bight, Monterey Bay); coastal embayment (e.g., Massachusetts Bay, Buzzards Bay, Long Island Sound); river plume (inverted) estuary (e.g., Mississippi River plume); coastal plain or drowned river valley estuary (e.g., Chesapeake Bay, Hudson River, Charleston Harbor); coastal plain salt marsh estuary (e.g., Plum Island Sound, North Inlet, Duplin River); lagoon (e.g., Padre Island, Pamlico Sound); fjord estuary (e.g., Penobscot Bay); coral reef system (e.g., Kaneohe Bay); tectonically caused estuary (e.g., San Francisco Bay, Tomales Bay); large river, non-drowned river estuary (e.g., Columbia River);

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution seagrass dominated estuary (e.g., Tampa Bay); and rocky intertidal, macroalgae dominated estuary (e.g., Casco Bay). How to identify research teams qualified to conduct process-oriented research at the index sites is equally elusive. To make major advances in understanding coastal systems and in predicting the effects of increased nutrient loading will require interdisciplinary research coordinated among investigators working within the index sites. Research should emphasize major ecological questions that stress linkages between terrestrial and coastal ecosystems. The research should seek to understand the causes of major ecological and environmental changes, including eutrophication and how populations, communities, and ecosystems of the coastal systems respond to these changes. Research at index sites should include experimental studies across a range of appropriate spatial and temporal scales. Comparative approaches encompassing parallel studies in different coastal systems are likely to provide important insight in how systems respond to nutrient enrichment. There should be close coupling between experimental, descriptive, and comparative research, with simulation modeling used to guide the research and to facilitate comparison with research in other systems. Finally, for the research to be of public value, there is a need for the detailed, process-based models to be abstracted to “simple” dose-response curves that can be easily applied by coastal resource managers at the local level. Index site research teams should be selected on a peer-reviewed competitive basis, similar to that employed by NSF for the selection of recent coastal long-term ecological research sites. There are probably only 12 to 24 research groups around the country qualified to conduct this type of research, including academic and federal groups. For index site research to be successful, the highest selection priority should be on the originality and quality of the research proposal and research group, followed by representation of the major estuarine types, by research site characteristics and suitability for conducting eutrophication research, and finally by geographic spread. Development of predictive, mechanistic models requires the integration of process-oriented research with comparative studies of estuaries (Geyer et al. 1999). It is not adequate to understand eutrophication processes in only the few, well-studied index estuaries; however, a systematic means of extending the results from one estuary to others that have not been extensively studied is also required. Understanding of processes resulting from the detailed studies in index estuaries can be tested and broadened through comparisons conducted in other estuaries of similar “type” but which represent the range of physical, hydrological, and biological characteristics. Within each “type,” responses are expected to vary

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution according to the major factors that control the response to nutrient addition such as dilution, freshwater input, flushing due to gravitational, tidal and wind driven circulation, stratification, water clarity/turbidity, denitrification, and biological control. Tier II coastal systems should be used as sites where comparative research can be conducted. Tier II systems might include estuaries such as those in NOAA’s National Estuarine Research Reserves and EPA’s National Estuary Programs. At these sites, research is conducted and data collected at much lower temporal and spatial resolution. Integration within a national program, however, would ensure collection of data necessary for testing the predictive models developed at index sites. Using information from existing programs can be cost-effective, but this is not always the ideal approach because many of these programs do not administer their own monitoring but instead rely on state agencies. Also, research projects can be short term, whereas a long-term perspective is of critical importance. The result of monitoring, research, and modeling conducted within a three-tiered national framework would be a series of dose-response curves tailored to each major type of coastal system (Figure 6-5). Specific dose-response curves tailored to individual estuaries on the basis of their unique characteristics could then be applied by local and state resource managers hoping to control or reverse eutrophication trends. ADDITIONAL QUESTIONS An understanding of the response of coastal waters to nutrient loading is developing slowly. Following the scientific lead of freshwater ecologists modeling the trophic state of lakes, marine ecologists are developing a predictive understanding of some of the key parameters controlling estuarine response to nutrient loading. There are numerous models that relate eutrophication or primary production to single variables, such as the filter feeding benthos and light availability (Alpine and Cloern 1992; Cloern 1999). Nixon (1992) described a strong relationship between rate of estuarine phytoplankton production and areal rate of nutrient loading. However, the extreme variation in response to any level of loading clearly demonstrates the importance of other factors that determine differences between estuaries. The next level of understanding may well result from incorporation of additional factors into models. Several groups around the world are taking the next steps of incorporating measures of circulation, stratification, mixing, dilution, and turbidity into their eutrophication models. NOAA is updating its DCP and EXP measures of estuarine susceptibility with current data and comparing predictions to their national dataset of estuarine trophic state. By incorporating new measures for estuarine susceptibility, predictions of estuarine response to

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution BOX 6-5 Eutrophication Reversal in Tampa Bay Tampa Bay, Florida, is a seagrass dominated estuary that has also experienced nitrogen source reductions and concomitant reversals in eutrophication. Impacts to Tampa Bay from increasing population and industrial development resulted in high algal biomass and large seagrass reductions during the 1960s and 1970s. By 1982, seagrass coverage was only 72 percent of earlier estimates. However, in 1996 seagrass coverage had increased by 25 percent since 1982 (Ries 1993; Johansson and Greening 2000). Nutrient loading reduction strategies were initiated in 1980, and since then, nitrogen inputs from sewage treatment plants have been reduced by 50 percent. As indicated in Figure 6-7, the pattern of eutrophication has been reversed in a time consistent with nutrient load reductions. Chlorophyll a concentrations began to decrease within three to five years of nutrient reductions and are now fluctuating close to targets set by resource managers. Seagrasses have taken longer to recover, lagging nutrient reduction by about eight years, but since 1988 coverage has been increasing about 200 hectares annually. With a management target of 15,378 hectares, recovery will take another 25 years to complete if recovery continues at present rates. The causes of lags are uncertain, but are thought to include continued release of nitrogen from internal nitrogen stores accumulated during earlier years of accumulation, and in the case of seagrass recovery, continued high epiphytic growth and high water column turbidity due to sediment resuspension in areas devoid of seagrass. It will be important to monitor Tampa Bay into the future to continue learning how the system responds, and how increased urban runoff from development, the growing role of atmospheric deposition from fossil fuel combustion, and complicating factors like dredging affect it.

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution FIGURE 6-7. Eutrophication reversal in Tampa Bay. As a result of large reductions in nitrogen loading, eutrophication is only slowly being reversed. (A) Recovery targets have been reached for chlorophyll a concentrations in Old Tampa Bay (modified from Greening 1999; Johansson and Greening 2000), (B) but are only slowly being approached for seagrass coverage. Nutrient reductions began in 1980 (modified from Greening 1999).

OCR for page 163
Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution nutrient loading based on areal loading alone may be improved (Nixon 1992). Scientists and managers are equally concerned about reversing the eutrophication trend observed in many of the nation’s estuaries. Whether the same classification schemes being developed to predict effects of increasing nutrients will work equally well in predicting reversals, if nutrient inputs are reduced, remains to be determined. As some studies have indicated, there are non-linearities and thresholds in eutrophication response to increased nutrient loading. There are undoubtedly additional non-linearities and thresholds governing the response of estuarine systems to reductions in nutrient loading. While loading, dilution, mixing, flushing, circulation, and stratification may be the key parameters governing the initial response of a system to nutrient increases, internal stores of organic matter and internal nutrient cycling processes might be important factors governing eutrophication reversal. There are few locations where nitrogen loading reductions have occurred and even fewer where resultant changes in estuarine trophic status have been chronicled. The Himmerfjärden, an estuary of the Swedish central Baltic coast, is one example where eutrophication has been reversed following reductions in nitrogen loading. Present nitrogen loads are less than 10 percent of pre-treatment input levels. Primary production, chlorophyll concentrations, and water transparency have all improved since treatment began. In this system, the reversal showed little lag in response following source reductions, presumably reflecting the rocky nature of the coastal zone and small internal stores of organic nutrients (Granéli et al. 1990; Elmgren and Larsson 1997). Tampa Bay, Florida, is another coastal system where local managers are reversing eutrophication. In this seagrass-dominated estuary, however, significant nutrient reductions have not resulted in eutrophication reversals to the extent observed in the Himmerfjärden. Time lags in recovery are hypothesized to result from large internal sources of detrital nitrogen accumulated over years of earlier eutrophic conditions. Recovery is likely to be slow until these historic stores of nitrogen are reprocessed and either flushed from the system or denitrified. Box 6-5 describes the Tampa Bay reversal in greater detail.