all instructors, providing a strong integration of content and pedagogy in both science and mathematics.

Purdue University (West Lafayette, Indiana)

Purdue University recently has revised its elementary teacher preparation program using a block schedule design (rather than a design where students take course independently of one another) and field placements in a selected “host school.” Students are in the field for six semesters, beginning in their sophomore year and extending through student teaching. Students in cohort groups take “blocks” of courses each semester while engaging in field experience at the host school. A team consisting of K-5 teacher liaisons from the schools, Purdue education faculty, and graduate students in education teaches the courses. The content of the program is guided by INTASC guidelines and emphasizes diversity training, application of technology, and the use of student portfolios. Additional information about this program is available at <http://www.soe.purdue.edu/volkmann/edci205/TiP.html>.

Syracuse University (Syracuse, New York)

Syracuse University employs a “cycle of excellence” model for preparing secondary science teachers. The “professional core” of this program is a three-semester sequence of coursework, numerous field experiences, and student teaching placements. One goal is to provide a set of integrated and coherent experiences that will continually strengthen the candidates’ professional development as science teachers. Each stage (semester) affords candidates opportunities to consider their current conception of effective science teaching and learning and to reflect on their growth and change as their ideas develop over time.

Candidates initially complete an entrance portfolio, in which they detail their emerging philosophy of teaching. When they take science methods during the second semester, candidates formalize their ideas about teaching and the decisions they will make in the classroom based on “best practices.” This includes writing an extensive research-based rationale for how they will teach science. In the final stage of the cycle, candidates then explore an element of their paper through collaborative action research with their host teacher during their semester of student teaching. Their action research frequently causes them to revise their rationale for teaching science, to implement new teaching strategies, and to change their teaching portfolios.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement