3
Behavioral Risk Factors

Several behaviors that exert a strong influence on health are reviewed in this section: tobacco use, alcohol consumption, physical activity and diet, sexual practices, and disease screening. Although epidemiologic data on the relationships between these behaviors and various health outcomes were available in the early 1980s, many refinements in knowledge have occurred since then. Causal conclusions have been strengthened by more sophisticated research designs, dose/response relationships have been clarified, the influence of many of these behaviors on overall public health has been quantified, and scientific guidelines have been formulated. This chapter summarizes the important recent epidemiologic evidence on the health effects of these behaviors.

TOBACCO USE

Since the release in 1964 of the surgeon general’s first report on smoking, there has been a tremendous increase in scientific knowledge about the health consequences of tobacco use (U.S. Department of Health and Human Services [USDHHS], 1989, 1990, 2000). Cigarette-smoking is the major cause of preventable mortality and morbidity in the United States (National Center for Health Statistics [NCHS], 1998a; USDHHS, 2000). Not only does smoking lead to an increased risk of the two leading causes of death in the United States—heart disease and cancer (NCHS, 1998b;



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences 3 Behavioral Risk Factors Several behaviors that exert a strong influence on health are reviewed in this section: tobacco use, alcohol consumption, physical activity and diet, sexual practices, and disease screening. Although epidemiologic data on the relationships between these behaviors and various health outcomes were available in the early 1980s, many refinements in knowledge have occurred since then. Causal conclusions have been strengthened by more sophisticated research designs, dose/response relationships have been clarified, the influence of many of these behaviors on overall public health has been quantified, and scientific guidelines have been formulated. This chapter summarizes the important recent epidemiologic evidence on the health effects of these behaviors. TOBACCO USE Since the release in 1964 of the surgeon general’s first report on smoking, there has been a tremendous increase in scientific knowledge about the health consequences of tobacco use (U.S. Department of Health and Human Services [USDHHS], 1989, 1990, 2000). Cigarette-smoking is the major cause of preventable mortality and morbidity in the United States (National Center for Health Statistics [NCHS], 1998a; USDHHS, 2000). Not only does smoking lead to an increased risk of the two leading causes of death in the United States—heart disease and cancer (NCHS, 1998b;

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences USDHHS, 2000)—but smoking during pregnancy has been linked to adverse pregnancy outcomes (DiFranza and Lew, 1995; Hebel et al., 1988; LeClere and Wilson, 1997; Li et al., 1993; Shu et al., 1995; USDHHS, 2000; Ventura et al., 1997; Walsh, 1994). Nonsmoking people are not immune to tobacco’s health hazards, inasmuch as exposure to second-hand smoke has serious health consequences for adults and children (USDHHS, 1986, 2000; U.S. Environmental Protection Agency [USEPA], 1992). Although cigarette-smoking among adults leveled off in the 1990s, tobacco use among adolescents increased in that period (USDHHS, 2000). That cigarette-smoking among younger people has increased is particularly alarming for several reasons. Evidence shows not only that tobacco is addictive (USDHHS, 2000) and that only a relatively small percentage of smokers can stop smoking permanently each year (Centers for Disease Control and Prevention [CDC], 1993, 1996b; USDHHS, 2000), but also that nicotine addiction develops in most smokers during adolescence (Institute of Medicine [IOM], 1994; USDHHS, 1988a, 1994, 2000). Curbing or eradicating tobacco use might remain a daunting task. Prevention is the primary objective, but many benefits are associated with smoking cessation, and such efforts should not be ignored. Measuring the Public Health Burden of Cigarette-Smoking There is widespread agreement in the public health and medical communities that cigarette-smoking is the biggest external (nongenetic) contributor to death in the United States. Tobacco-related diseases account for more than 400,000 deaths among adults in the United States each year (CDC, 1993; NCHS, 1998b; USDHHS, 2000). Deaths attributable to tobacco use have been found to exceed deaths from acquired immunodeficiency syndrome (AIDS), traffic accidents, alcohol use, suicide, homicide, fire, and use of illegal drugs combined (IOM, 1994). One World Health Organization report showed that the burden of disease and death attributable to tobacco in developed countries was substantially higher than that attributable to any other risk factor, including alcohol use, unsafe sex, hypertension, and physical inactivity (Murray and Lopez, 1996). Because there is a long delay between the onset of persistent smoking and the full development of its adverse health consequences, current tobacco-attributable mortality and morbidity are consequences of smoking that began decades ago. If current U.S. tobacco use patterns persist, it is

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences estimated that 5 million persons who were under the age of 18 in 1995 will die from a smoking-related disease (CDC, 1996a; USDHHS, 2000). Major Smoking-Related Diseases Cigarette-smoking leads to an increased risk of heart disease, the leading cause of death in the United States (USDHHS, 2000); and the surgeon general’s 1983 report (USDHHS, 1983) concluded that cigarette-smoking is the most important modifiable risk factor for coronary heart disease. Cigarette-smoking is also linked with cancer, the second-leading cause of death in the United States (NCHS, 1998b). Smoking causes cancers of the lung, larynx, esophagus, pharynx, mouth, and bladder, and contributes to cancer of the pancreas, kidney, and cervix (USDHHS, 2000). Tobacco use is the leading contributor to lung cancer incidence, and refraining from smoking could prevent most lung cancer cases (National Cancer Institute, 1986; NCHS, 1998b). In 1996, lung cancer accounted for about 28% of all cancer deaths (NCHS, 1998b; Ries et al., 1996; Ventura et al., 1997). An estimated 172,000 new cases are diagnosed each year, and lung cancer causes an estimated 153,000 deaths each year (NCHS, 1998b). Smoking also causes other lung diseases, such as chronic bronchitis and chronic obstructive pulmonary disease (USDHHS, 2000). According to the Surgeon General’s 1990 report (USDHHS, 1990), smoking is the most important modifiable cause of poor pregnancy outcome in the United States, It is estimated that 15–30% of all pregnant women smoke (Chandra, 1995; Ventura et al., 1997). Pregnancy complications associated with maternal smoking include premature detachment of the placenta, development of the placenta in the lower uterine segment, which can cause hemorrhaging in the last trimester; bleeding during pregnancy; premature membrane rupture; and premature delivery. Maternal smoking also has been associated with spontaneous abortions and low birthweight (DiFranza and Lew, 1995; Hebel et al., 1988; LeClere and Wilson, 1997; Li et al., 1993; Shu et al., 1995; USDHHS, 2000; Ventura et al., 1997; Walsh, 1994). Evidence indicates that in some groups of pregnant women smoking one to six cigarettes a day increases by about two-thirds the risk of giving birth to a low birthweight infant (LeClere and Wilson, 1997; Ventura et al., 1997). Smoking in the last few weeks of pregnancy has the biggest impact on fetal weight gain. Women who stop smoking before becoming pregnant or who quit in the first 3–4 months of

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences pregnancy have infants of the same birthweight as those born to women who never smoked. Women who stop smoking later in pregnancy have higher birthweight infants than do women who smoke throughout pregnancy. The complex issues associated with the real and perceived risk of tobacco and tobacco harm-reduction products are explored in an IOM report (2001). Consequences of Second-Hand Smoke Exposure to second-hand smoke has serious health consequences (USDHHS, 1986, 2000; USEPA, 1992). At least 43 of the roughly 4000 chemicals identified in tobacco smoke have been shown to cause cancer in humans and animals (USDHHS, 2000; USEPA, 1992). About 3000 nonsmoking Americans die of lung cancer and 150,000–300,000 children suffer from lower respiratory tract infections each year because of exposure to second-hand smoke (USDHHS, 2000; USEPA, 1992). Second-hand smoke exposure exacerbates asthma and leads to 500,000 child visits to physicians each year (DiFranza and Lew, 1996; USDHHS, 2000). Second-hand smoke exposure also has been linked to increased risk of heart disease among adults (Glantz and Parmely, 1995; Howard et al., 1998; USDHHS, 2000). Data gathered in a study of the U.S. population over the age of 3 showed that almost 88% of nonusers of tobacco had detectable serum cotinine, a biological marker of exposure to second-hand smoke (Pirkle et al., 1996; USDHHS, 2000). Another study showed that almost 22% of Americans under the age of 18 (about 15 million people) were exposed to second-hand smoke in their homes (CDC, 1997b; USDHHS, 2000). A 1996 study showed that home and workplace environments contribute significantly to the widespread exposure to second-hand smoke in the United States (Pirkle et al., 1996; USDHHS, 2000). Socioeconomic Characteristics of Smokers Although smoking among adults declined steadily from the middle 1960s through the 1980s, it leveled off in the 1990s (USDHHS, 2000). In 1995, the prevalence of smoking among adults was almost 25% (CDC, 1997a; NCHS, 1998b; USDHHS, 2000). Men are more likely to smoke than are women—27% and 22%, respectively (CDC, 1997a; USDHHS, 2000)—although those rates could change because cigarette use among

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences high school senior girls almost equals that among boys (NCHS, 1998a; USDHHS, 2000). American Indians and Alaska Natives are more likely (34%), and Hispanics, Asians, and Pacific islanders are less likely (16%), to smoke than are other racial and ethnic groups (African American, 26%; White, 25%) (USDHHS, 2000). Cigarette-smoking was about twice as common among poor men and women as among more affluent persons in 1995 (NCHS, 1998a). One study showed that non-Hispanic White and African Americans living in poverty were more likely to smoke than were people with middle and high incomes in 1995 (NCHS, 1998a). Among adolescents, tobacco use increased in the 1990s, after decreasing in the 1970s and 1980s (USDHHS, 2000). Several factors place young people at an increased risk of initiating tobacco use (USDHHS, 2000). Sociodemographic risk factors include low socioeconomic status of one’s family. Environmental risk factors include accessibility and availability of tobacco products, cigarette advertising and promotion, the price of tobacco products, perceptions that tobacco use is normative, use and approval of tobacco use by peers and siblings, and lack of parental involvement. Personal risk factors include poor self-image and low self-esteem relative to peers, the belief that tobacco use is functional (useful or providing a benefit), and lack of confidence in one’s ability to refuse an offer to use tobacco (USDHHS, 1994, 2000). Primary Prevention of Cigarette-Smoking When the surgeon general’s first report on smoking was released in 1964, 42% of American adults smoked tobacco; in 1995, use had declined to 24.7% (47 million) of American adults (CDC, 1997a). Among adults, the number of former smokers (43 million) is now almost the same as current smokers (46 million) (IOM, 1994). Given the progress since 1964, it is possible to envision a smoke-free society; however, maintaining the current rate of progress will be challenging. There is overwhelming evidence that the nicotine in tobacco is addictive (USDHHS, 1988a, 2000). Almost 70% of current smokers want to quit smoking, and about 45% quit smoking for at least a day (Howard et al., 1998). However, only 2.5% of smokers stop smoking permanently each year (CDC, 1996b, 1993; USDHHS, 2000). Nearly all first-time use of tobacco occurs before high school graduation. That is important because nicotine addiction occurs in most smokers during adolescence (IOM, 1994; USDHHS, 1988a, 1994, 2000).

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Smoking patterns among American youth and the short- and long-term health consequences of initiating smoking in adolescence were described in the Surgeon General’s 1994 report Preventing Tobacco Use Among Young People (USDHHS, 1994). The same report provides a summary of efforts to prevent tobacco use among young people; such prevention emerged as a major focus of tobacco control efforts (IOM, 1994; USDHHS, 2000). Benefits of Smoking Cessation Given the addictive nature of nicotine and the cumulative nature of health damage due to smoking, strategies to reduce tobacco use should emphasize primary prevention rather than smoking cessation. However, smoking’s prevalence in the U.S. population points to the need to continue cessation efforts. Scientific data on the benefits of smoking cessation were reviewed in the surgeon general’s 1990 report (USDHHS, 1990). In the 25 years between 1965 and 1990, half of all living Americans who had ever smoked had stopped. The 1990 report concluded that smoking cessation has major and immediate health benefits for men and women of all ages. Former smokers live longer than continuing smokers. For example, on the average, people who quit smoking before reaching the age of 50 have half the risk of dying before the age of 65 than those who do not quit before the age of 50 (USDHHS, 2000, 1990). OBESITY: PHYSICAL ACTIVITY AND DIET Recent years have seen an epidemic in obesity in the United States (Mokdad et al., 1999). Obesity is a major health risk for diabetes (Must et al., 1999), and the relationship of weight to the disease has been extensively reviewed in the literature (Kopelman, 2000; Leong and Wilding 1999; National Task Force on the Prevention and Treatment of Obesity, 2000; Scheen, 2000; USDHHS, 1980). Overweight adults also are at an increased risk for hypertension, coronary heart disease, and some forms of cancer (NCHS, 1998a; Pi-Sunyer, 1993). They also run the risk of developing gallbladder disease, osteoarthritis, sleep apnea, respiratory problems (USDHHS, 2000), and a variety of musculoskeletal problems (Foreyt et al., 1996). There is some disagreement about whether the principal threat to health is from an increase in body fat per se, or from a lack of physical activity, but there is no disagreement that major behavioral change is

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences needed to correct this increase in obesity (Hill and Peters, 1998; Taubes, 1998). Although genetic factors are important, physical activity and diet contribute significantly to maintenance of appropriate body weight. The combination of inactivity and detrimental dietary patterns has been ranked as the second leading factor contributing to mortality in the United States, after tobacco use (McGinnis and Foege, 1993). In addition, both diet and physical activity, in and of themselves, influence health. Studies show that men and women who are physically active have, on the average, lower mortality than people who are inactive (Kaplan et al., 1987, 1996; Kujala et al., 1998; Kushi et al., 1997; Leon et al., 1987; Lindsted et al., 1991; Paffenbarger et al., 1993; Sherman et al., 1994; Slattery et al., 1989). A sedentary lifestyle has been linked to 23% of deaths from major chronic diseases (Hahn et al., 1990). Furthermore, studies show that dietary factors are associated with 4 of the 10 leading causes of death, including coronary heart disease, stroke, some forms of cancer, and non-insulin-dependent diabetes mellitus (CDC, 1997c; USDHHS, 2000). This section will review some of the factors that influence obesity, with a particular emphasis on physical activity and diet, and describe the relevance of body weight, physical activity, and diet to cardiovascular disease, cancer, and musculoskeletal problems. It is not meant to be a comprehensive review but rather a sampling of the influences these behaviors can have on health and disease. Prevalence and Trends Obesity and overweight are increasing in the United States. Currently, “overweight” is defined as a body mass index (BMI)1 of 25–30 while “obesity” is defined as a BMI greater than 30 (National Heart Lung Blood Institute Obesity Task Force, 1998).2 For most of the 1960s and 1970s the 1   BMI is used in all these guidelines as a measure of adiposity. It is calculated as weight (in kilograms) divided by height (in meters) squared. Growing evidence suggests that BMI reflects adiposity well through middle age, but might be less clearly related to adiposity at older ages when lean muscle mass can decrease and mass is redistributed to the abdomen. 2   The correlation between BMI and body fat is both age and sex dependent, and it is valid for comparison across ethnic groups (Gallagher et al., 1996; USDHHS, 2000). A limitation of the BMI measure is that it does not provide information about body fat distribution, which has been identified as an independent predictor of health risk (National Institute of Health, 1993; USDHHS, 2000). However, until a better measure of body fat is developed, BMI will be used as a proxy to screen for overweight and obesity.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences prevalence of overweight adults (25–74 years of age) was nearly constant at about 25%. However, by 1988–1994, that rose to approximately 35% (NCHS, 1998a), and the prevalence continues to increase. Obesity increased from 12% in 1991 to almost 18% in 1998 and 19% in 1999 (Mokdad et al., 1999; 2000). Obesity in children over the age of 6 and in adolescents also is increasing (Troiano and Flegal, 1998; USDHHS, 2000). Because overweight and obesity that develop in childhood or adolescence can persist into adulthood, this trend increases the risk for chronic disease later in life (USDHHS, 2000). Relatively few Americans participate in regular physical activity. Only 11% of the U.S. adult population reported regular, vigorous physical activity for 20 minutes or longer more than twice each week (USDHHS, 2000). Furthermore, physical activity tends to decline during adolescence (CDC, 1998; Pate et al., 1994), and a major decrease in vigorous physical activity (much more for girls than for boys) occurs in grades 9–12 (USDHHS, 2000). A consensus is emerging that physical activity does not need to be vigorous to be beneficial to health.3 For people who are inactive, even small increases have been associated with measurable health benefits (USDHHS, 2000). In 1994–1996, the proportion of Americans who ate away from home was approximately 57%, or an increase of about one-third from the late 1970s (USDA, 1997; USDHHS, 2000). Recent data indicate that 40% of the family food budget is spent at restaurants and carry-outs (USDA, 1996; USDHHS, 2000). Food purchased from restaurants, fast-food outlets, school cafeterias, and vending machines generally is higher in saturated fat, cholesterol, and sodium and lower in fiber and calcium than is food prepared and eaten at home (Lin and Frazao, 1997; USDHHS, 2000). And people tend to eat larger portions of higher calorie foods when they eat out. The larger food portions in restaurants further exacerbate this 3   Generally terms used to define the intensity of physical activity are light, moderate, hard or vigorous, and very hard or strenuous. A common classification is to use MET (metabolic equivalent task) values. One MET is the number of kilocalories expended in 1 hour of resting. Often, activities with a MET value below 3.0 are considered light activities; easy walking and regular housework are examples. Activities with MET values of at least 3.0 but less than 6.0 are often classified as moderate; examples are brisk walking, heavy gardening, and calisthenics. Activities with MET values of at least 6.0 but less than 12.0 are often called vigorous, and include jogging, running, swimming, aerobics, and bicycling. Strenuous or very hard activities—such as bicycle or foot racing, speed skating, and competitive cross-country skiing—have MET values of 12.0 or higher.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences problem (McCrory et al., 2000). One study pointed to an association between the frequency of eating restaurant food and elevated BMI (McCrory et al., 1999). A 1995 survey found that school meals and snacks had the highest saturated-fat density of all foods people eat away from home, including food from restaurants, fast-food outlets, and vending machines (Lin and Frazao, 1997; USDHHS, 2000). Although schools are required to plan menus that comply with U.S. dietary guidelines, these standards do not apply to a la carte foods or to foods sold in snack bars, school stores, or vending machines (USDHHS, 2000). Because many dietary habits are established during childhood (CDC, 1996c; Kelder et al., 1994; USDHHS, 2000), educating school-aged children about nutrition can help them establish healthy eating habits early in life. Implementation of curricula that encourage healthy eating and that provide students with the skills they need to adopt and maintain healthy eating habits has led to positive changes in student dietary behaviors and to reductions in cardiovascular disease risk factors (CDC, 1996c; Contento et al., 1995; Lytle and Achterberg, 1995; USDHHS, 2000). Similar increases in the incidence of overweight and obesity are evident throughout the world, although rates differ (Flegal, 1999). In Europe obesity is especially prevalent in Southern and Eastern countries, particularly among women (Seidell, 1995). In Sweden, between 1980 and 1996 the prevalence of obesity rose from 9% to 12% in women and from 6.6% to 10% in men (Lissner et al., 2000). Between 1982 and 1994, the percentage of overweight people in New Zealand increased from about 53% to 64% for men and 36.5% to 45% for women (Simmons et al., 1996). In many countries, as in the United States, obesity is an increasing concern in children (for example, Great Britain: Chinn and Rona, 2001; Germany: Kromeyer-Hauschild et al., 1999; Singapore: Ho et al., 1983). Even in the developing world, the rates of obesity are showing increases (Shetty, 1997). As reviewed above for the United States, these international trends are attributed to high fat, energy dense diets and reduced physical activity (Shetty, 1997; Seidell, 1995). Socioeconomic Characteristics Although overweight and obesity are increasing among all sociodemographic groups, the prevalence is influenced by specific sociocultural variables, including gender, ethnicity, socioeconomic status, and education. From 1988 to 1994, about one-third of U.S. adults were overweight,

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences with a higher prevalence among poor women (46%) (NCHS, 1998a). A clear gradient with family income exists for the prevalence of overweight in women (but not in men). Poor women are 1.4 times more likely to be overweight than are middle-income women and 1.6 times more likely to be overweight than are women with high incomes (NCHS, 1998a). Obesity is particularly common among Hispanic, African American, Native American, and Pacific Islander women (USDHHS, 2000). Populations also differ in amount of physical activity. The proportion of the population reporting no leisure-time physical activity is higher among women than men, among Hispanics than among Whites, among older than younger adults, and among the less affluent than the wealthier (USDHHS, 1996, 2000). A sedentary lifestyle is less likely with increasing income. African American men living in poverty are 3 times more likely to be sedentary than were those with high family incomes. For Hispanic and non-Hispanic White men, a sedentary lifestyle was about 2.5 times more prevalent among the poor than among those with a higher family income. Women had similar income-related gradients in sedentary lifestyle, with higher income groups experiencing a lower prevalence of sedentary lifestyle (NCHS, 1998a). Adult Weight Gain Adult weight gain is observed in many industrialized societies. Because full adult height generally is attained by age 18, weight gain in adulthood is almost exclusively through the addition of adipose tissue. Lack of weight gain, particularly among men over 50, does not imply an absence of gain in fat. Above this age, muscle mass is, to varying degrees, redistributed to fat, much of it within the abdomen (Rimm et al., 1995). Avoiding weight gain as an adult is a high priority because treatment of obesity has poor long-term success, and lost weight often is regained (Chapter 5). Several studies show that greater leisure-time physical activity is associated with lower weight gain (Ravussin et al., 1988; Rissanen et al., 1991), and it reduces the weight gain often observed after cessation of cigarette-smoking (Kawachi et al., 1996). Although many people try to lose weight, most regain the weight within 5 years (NIH, 1993; USDHHS, 2000). In order to maintain weight loss, permanent lifestyle changes that combine good dietary habits, decreased sedentary behavior, and increased physical activity are essential. Changes in the physical and social environment can help people maintain the necessary long-term lifestyle changes

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences both for diet and for physical activity (USDHHS, 2000). Preventing weight gain in the first place also substantially reduces the likelihood that conditions such as hypertension and diabetes will develop (Colditz et al., 1995). A reduction of even 10–15% of body weight in substantially overweight people has been shown to ameliorate hyperglycemia, hyperlipidemia, and hypertension (see Mertens and Van Gaal, 2000; Oster et al., 1999; de Leiva, 1998; Goldstein, 1992). Weight and Disease Several authors have pointed out the consequences of overweight and obesity for morbidity and mortality (Allison et al., 1999; Calle et al., 1999; Must et al., 1999). A linear relationship exists between adiposity and most health conditions. The shape of the curve for mortality has been debated, in part because of excess mortality among the leanest people. The positive relationship between leanness and mortality is confounded by cigarette-smoking (smokers tend to be leaner but also are at higher risk of disease), and by reverse causation—the major illnesses that predispose to death lead first to weight loss. The effect of disease on weight might result in the leaner segment of the population being overrepresented among those at a higher risk of death. Observed statistical associations between weight and mortality have driven recommendations for weight guidelines, but setting the guidelines has been problematic because of the U-shaped relationship described above, and recommendations have varied over time. The Dietary Guidelines Advisory Committee (USDA and USDHHS, 1995a) concluded that mortality risk increased significantly among persons with a BMI of 25 or higher (Lee and Paffenbarger, 1992; Rimm et al., 1995; Willett et al., 1995), whereas a linear increase in risk of diabetes, hypertension, and coronary heart disease begins well below that value (Chan et al., 1994; Colditz et al., 1995; Willett et al., 1995). A 2- to 4-fold increase in risk of these diseases is observed among those with BMI 24–25, compared with those whose BMI is 21. The lower cut-point for the healthy weight range is set at a BMI of 19, below which a person is considered excessively thin and at risk of other health complications (USDHHS, 2000; USDA, 1995a, b; USDA and USDHHS, 1995a, b). Diet and physical activity are behaviors that have a direct influence on weight. However, they may also have direct effects on diseases. These direct and indirect actions are explored below in examples of diseases.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Hillier, S., Nugent, R., Eschenbach, D., Krohn, M., Gibbs, R., Martin, D., Cotch, M.F., Edelman, R., Pastorek, J.G. 2nd, Rao, A.V., et al. (1995). Association between bacterial vaginosis and preterm delivery of a low birth weight infant. New England Journal of Medicine, 333, 1737–1742. Hillis, S., Nakashima, A., Amsterdam, L., Pfister, J., Vaughn, M., Addiss, D., Marchbanks, P.A., Owens, L.M., and Davis, J.P. (1995). The impact of a comprehensive chlamydia prevention program in Wisconsin. Family Planning Perspectives, 27, 108–111. Ho, T.F., Chay, S.O., Yip, W.C., Tay, J.S., and Wong, H.B. (1983) The prevalence of obesity in Singapore primary school children. Australian Paediatric Journal, 19, 248– 250. Holman, C. and English, D. (1996). Ought low alcohol intake to be promoted for health reasons? Journal of the Royal Society of Medicine, 89, 123–129. Howard, G., Wagenknech, L.E., Burke, G.E., Diez-Roux, A., Evans, G.W., McGovern, P., Nieto, F.J., and Tell, G.S. (1998). Cigarette smoking and progression of atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. Journal of the American Medical Association, 279, 119–124. Hu, F.B., Stampfer, M.J., Manson, J.E., Rimm, E., Colditz, G.A., Rosner, B.A., Hennekens, C.H. and Willett, W.C. (1997). Dietary fat intake and the risk of coronary heart disease in women. New England Journal of Medicine, 337, 1491–1499. Huang, Z., Hankinson, S.E., Colditz, G.A., Stampfer, M.J., Hunter, D.J., Manson, J.E., Hennekens, C.H., Rosner, B., Speizer, F.E., and Willett, W.C. (1997). Dual effects of weight and weight gain on breast cancer risk. Journal of the American Medical Association, 278, 1407–1411. Huang, Z., Willett, W.C., Manson, J.E., Rosner, B., Stampfer, M.J., Speizer, F.E., and Colditz, G.A. (1998). Body weight, weight change, and risk for hypertension in women. Annals of Internal Medicine, 128, 81–88. Hubert, H.B., Feinleib, M., McNamara, P.M., and Castelli, W.P. (1983). Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation, 67, 968–977. IOM (Institute of Medicine) (1994). Growing Up Tobacco Free: Preventing Nicotine Addiction in Children and Youths. B.S.Lynch and R.J.Bonnie (Eds.) Washington, DC: National Academy Press. IOM (Institute of Medicine) (1996). Fetal Alcohol Syndrome: Diagnosis, epidemiology, prevention, and treatment. K.Stratton, C.Howe, and F.Battaglia (Eds.). Washington, DC: National Academy Press. IOM (Institute of Medicine) (1997). The Hidden Epidemic: Confronting Sexually Transmitted Diseases. T.R.Eng and W.T.Butler (Eds.). Washington, DC: National Academy Press. IOM (Institute of Medicine) (2001a). Clearing the Smoke, Assessing the Science Base for Tobacco Harm Reduction. K.Stratton, P.Shetty, R.Wallace, and S.Bondurant (Eds.). Washington, DC: National Academy Press. IOM (Institute of Medicine) (2001b). Speaking of Health: Assessing Health Communication. Strategies for Diverse Populations. C.Chrvala and S.Scrimshaw (Eds.). Washington, DC: National Academy Press. Ip, C. and Carroll, K. (Eds.) (1997). Individual fatty acids and cancer. American Journal of Clinical Nutrition, 65, 1505S–1586S.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Jackson, R., Scragg, R., and Beaglehole, R. (1992). Does recent alcohol consumption reduce the risk of acute myocardial infarction and coronary death in regular drinkers? American Journal of Epidemiology, 136, 819–824. Joint National Committee on Detection and Treatment of High Blood Pressure. (1993). The Fifth Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Bethesda, MD: National Institutes of Health. Kaplan, G., Seeman, T., Cohen, R., Knudsen, L., and Guralnik, J. (1987). Mortality among the elderly in the Alameda County Study: Behavioral and demographic risk factors. American Journal of Public Health, 77, 307–312. Kaplan, G.A., Strawbridge, W.J., Cohen, R.D., and Hungerford, L.R. (1996). Natural history of leisure-time physical activity and its correlates: Associations with mortality from all causes and cardiovascular disease over 28 years. American Journal of Epidemiology, 144, 793–797. Kawachi, I., Troisi, R., Rotnitzky, A., Coakley, E., and Colditz, G. (1996). Can physical activity minimize weight gain in women after smoking cessation? American Journal of Public Health, 86, 999–1004. Kelder, S.H., Perry, C.L., Klepp, K.I., and Lytle, L.L. (1994). Longitudinal tracking of adolescent smoking, physical activity, and food choice behaviors. American Journal of Public Health, 84, 1121–1126. Kohl, H.I., Powell, K., Gordon, N., Blair, S., and Paffenbarger, R.J. (1992). Physical activity, physical fitness, and sudden cardiac death. Epidemiologic Reviews, 14, 37–58. Kopelman, P.G. (2000). Obesity as a medical problem. Nature, 404, 635–643. Kramer, M.M. and Wells, C.L. (1996). Does physical activity reduce risk of estrogen-dependent cancer in women? Medicine and Science in Sports and Exercise, 28, 322–334 Kromeyer-Hauschild, K., Zellner, K., Jaeger, U., and Hoyer, H. (1999). Prevalence of overweight and obesity among school children in Jena (Germany). International Journal of Obesity and Related Metabolic Disorders, 23, 1143–1150. Kujala, U.M., Kaprio, J., Sarna, S., and Koskenvuo, M. (1998). Relationship of leisure-time physical activity and mortality: The Finnish twin cohort. Journal of the American Medical Association, 279, 440–444. Kushi, L., Fee, R., Folsom, A., Mink, P., Anderson, K., and Sellers, T. (1997). Physical activity and mortality in postmenopausal women. Journal of the American Medical Association, 277, 1287–1292. LaCroix, A.Z., Guralnik, J.M., Berkman, L.F., Wallace, R.B., and Satterfield, S. (1993). Maintaining mobility in late life. II. Smoking, alcohol consumption, physical activity, and body mass index. American Journal of Epidemiology, 137, 858–869. Lane, N. (1995). Exercise: a cause of osteoarthritis. Journal of Rheumatology, 22, 3–6. Lanyon, L. (1987). Functional strain in bone tissue as an objective and controlling stimulus for adaptive bone remodelling. Journal of Biomechanics, 20, 1083–1093. Lanyon, L. (1993). Osteocytes, strain detection, bone modeling and remodeling. Calcified Tissue International, 53, S102–S107. Laumann, E. (1994). The Social Organization of Sexuality. Chicago: University of Chicago Press. Le Marchand, L., Wilkens, L.R., and Mi, M.-P. (1991). Early-age body size, adult weight gain and endometrial cancer risk. International Journal of Cancer, 48, 807–811.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences LeClere, F.B. and Wilson, J.B. (1997). Smoking behavior of recent mothers, 18–44 years of age, before and after pregnancy: United States, 1990. Journal of the American Academy of Nurse Practitioners, 9, 323–326. Lee, I.-M and Paffenbarger, R.S. (1992). Change in body weight and longevity. The Journal of the American Medical Association, 268, 2045–2049. Lee, I.-M, Paffenbarger, R.S., Jr., and Hsieh, C.C. (1991). Physical activity and risk of developing colorectal cancer among college alumni. Journal of the National Cancer Institute, 83, 1324–1329. Lee, I.-M. (1994). Physical activity, fitness, and cancer. In C.Bouchard, R.Shephard, and T.Stephens (Eds.) Physical Activity, Fitness, and Health: International Proceedings and Consensus Statement (pp. 814–831). Champaign, IL: Human Kinetics. Leon, A., Connett, J., Jacobs, D., and Rauramaa, R. (1987). Leisure-time physical activity levels and risk of coronary heart disease and death: The Multiple Risk Factor Intervention Trial. Journal of the Amercian Medical Association, 258, 2388–2395. Leong, K.S. and Wilding, J.P. (1999). Obesity and diabetes. Baillieres Best Practices Reseach Clinical Endocrinology Metabolism, 13, 221–237. Li, C.Q., Windsor, R.A., Perkins, L., Goldenberg, R.L., and Lowe, J.B. (1993). The impact on infant birth weight and gestational age of cotinine-validated smoking reduction during pregnancy. Journal of the American Medical Association, 269, 1519–1524. Lin, B.H. and Frazao, E. (1997). Nutritional quality of foods at and away from home. Food Review, 20, 33–40. Lindsted, K., Tonstad, S., and Kuzma, J. (1991). Self-report of physical activity and patterns of mortality in Seventh-Day Adventist men. Journal of Clinical Epidemiology, 44, 355–364. Lissner, L., Johansson, S.E.Qvist, J., Rossner, S., and Wolk, A. (2000). Social mapping of the obesity epidemic in Sweden. International Journal of Obesity and Related Metabolic Disorders, 24, 801–805. Lytle, L. and Achterberg, C. (1995). Changing the diet of America’s children: What works and why? Journal of Nutrition Education, 27, 250–260. Manson, J.E., Hu, F.B., Rich-Edwards, J.W., Colditz, G.A., Stampfer, M.J., Willett, W.C., Speizer, F.E., and Hennekens, C.H. (1999). A prospective study of walking compared with vigorous exercise in the prevention of coronary heart disease in women. The New England Journal of Medicine, 341, 650–658. Marceau, M., Kouame, N., Lacourciere, Y., and Cleroux, J. (1993). Effects of different training intensities on 24 hour blood pressure in hypertensive subjects. Circulation, 88, 2803–2811. Martinez, M.E., Giovannucci, E., Spiegelman, D., Hunter, D.J., Willett, W.C., Colditz, G.A. (1997). Leisure-time physical activity, body size, and colon cancer in women. Nurses’ Health Study Research Group. Journal of the National Cancer Institute, 89, 948–955. Marx, R., Aral, S., Rolfs, R., Sterk, C., and Kahn, J. (1991). Crack, sex, and STDs. Sexually Transmitted Diseases, 18, 92–101. Mason, J.B. and Levesque, T. (1996). Folate: effects on carcinogenesis and the potential for cancer chemoprevention. Oncology, 10, 1727–1736; 1742–1743. Matsusaki, M., Ikeda, M., Tashiro, E., Koga, M., Miura, S., and Ideishi, M. (1992). Influence of workload on the antihypertensive effect of exercise. Clinical and Experimental Pharmacology and Physiology, 19, 471–479.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences McCrory, M.A., Fuss, P.J., Hays, N.P, Vinken, A.G., Greenberg, A.S. and Roberts, S.B. (1999) Overeating in America: Association between restaurant food consumption and body fatness in healthy adult men and women ages 19 to 80. Obesity Research, 7, 564–571. McCrory, M.A., Fuss, P.J., Saltzman, E., Roberts, S.B. (2000). Dietary determinants of energy intake and weight regulation in healthy adults. Journal of Nutrition, 130 (2S Suppl), 276S–279S. McGinnis, J.M. and Foege, W.H. (1993). Actual causes of death in the United States. Journal of the American Medical Association, 270, 2207–2212. McTiernan, A., Stanford, J.L., Weiss, N.S., Daling, J.R., and Voigt, L.F. (1996). Occurrence of breast cancer in relation to recreational exercise in women age 50–64 years. Epidemiology, 7, 598–604. Meade, T.W., Imeson, J., and Stirling, Y. (1987). Effects of changes in smoking and other characteristics on clotting factors and the risk of ischaemic heart disease. Lancet, 2 (8566), 986–988. Meis, P.J., Goldenberg, R.L., Mercer, G., Moawad, A., Das, A., McNellis, D., Johnson, F., Iams, J.D., Thom, E., and Andrews, W.W. (1995). The preterm prediction study: Significance of vaginal infections. American Journal of Obstetrics and Gynecology, 173, 1231–1235. Mertens, I.L. and Van Gaal, L.F. (2000). Overweight, obesity, and blood pressure: The effects of modest weight reduction. Obesity Research, 8, 270–278. Miller, B., Monson, B., and Norton, M. (1995). The effects of forced sexual intercourse on white female adolescents. Child Abuse and Neglect, 19, 1289–1301. Minor, M. (1991). Physical activity and management of arthritis. Annals of Behavioral Medicine , 13, 117–124. Mittendorf, R., Longnecker, M.P., Newcomb, P.A., Dietz, A.T., Greenberg, E.R., Bogdan, G.F., Clapp, R.W., and Willett, W.C. (1995). Strenuous physical activity in young adulthood and risk of breast cancer (United States). Cancer Causes and Control, 6, 347–353. Mokdad, A., Serdula M.K., Dietz, W.H., Bowman, B.A., Marks, J.S., and Koplan J.P (1999). The spread of the obesity epidemic in the United States, 1991–1998. Journal of the American Medical Association, 282, 1519–1522. Mokdad, A., Serdula, M.K., Dietz, W.H., Bowman, B.A., Marks, J.S., and Koplan, J.P. (2000). The continuing epidemic of obesity in the United States. Journal of the American Medical Association, 284, 1650–1651. Morrison, C., Schwingl, P., and Cates, W.J. (1997). Sexual behavior and cancer prevention. Cancer Causes and Control, 8, S21–S25. Murphy, G.P., Mettlin, C., Menck, H., Winchester, D.P., and Davidson, A.M. (1994). National patterns of prostate cancer treatment by radical prostatectomy: Results of a survey by the American College of Surgeons Commission on Cancer. Journal of Urology, 152, 1817–1819. Murray, C. and Lopez, A. (1996). The global burden of disease. Geneva: World Health Organization. Must, A., Spandano, J., Coakley, E.H., Field, A.E., Colditz, G., and Dietz, W.H. (1999) The disease burden associated with overweight and obesity. Journal of the American Medical Association, 282, 1523–1529.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences National Cancer Institute. (1986). Cancer Control Objectives for the Nation: 1985–2000. National Cancer Institute Monographs 2. Bethesda, MD: U.S. Department of Health and Human Services. National Heart Lung Blood Institute Obesity Task Force (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. Obesity Research, 6 (suppl. 2), 51S–209S. National Research Council (NRC). (1989). Diet and Health: Implications for Reducing Chronic Disease Risk. Washington, DC: National Academy Press. National Task Force on the Prevention and Treatment of Obesity (2000). Overweight, obesity, and health risk. Archives of Internal Medicine, 160, 898–904. NCHS (National Center for Health Statistics) (1998a). Health, United States, 1998: With Socioeconomic Status and Health Chartbook. Hyattsville, MD: U.S. Dept. of Health and Human Services. NCHS (National Center for Health Statistics) (1998b). SEER Cancer Statistics Review, 1973–1995. Bethesda, MD: National Cancer Institute. Nelson, M.E., Fiatarone, M.A., Morganti, C.M., Trice, I., Greenberg, R.A., and Evans, W.J. (1994). Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. Journal of the American Medical Association, 272, 1909–1914. NIAAA (National Institute on Alcohol Abuse and Alcoholism) (1993). Alcohol and cancer, (Alcohol Alert no. 21–1993). Bethesda, MD: U.S. Department of Health and Human Services. NIH (National Institutes of Health) (1993). Methods for voluntary weight loss and control. Annals of Internal Medicine, 119, 764–770. NIH (National Institutes of Health) (1994). Optimal Calcium Intake. NIH Consensus Statement, 12, 1–31. NIH (National Institutes of Health) (1997a). Management of Hepatitis C. NIH Consensus Statement, 15, 1–41. NIH (National Institutes of Health) (1997b). Breast Cancer Screening for Women Ages 40–49. NIH Consensus Statement, 15, 1–35. O’Malley, P.M., Johnston, L.D., and Bachman, J.F. (1998). Alcohol use among adolescents. Alcohol Health and Research World, 22, 85–93. Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A., Keogh, J.P., Meyskens, F.L., Jr., Valanis, B., Williams, J.H., Jr., Barnhart, S., Cherniack, M.G., Brodkin, C.A., and Hammar, S. (1996) Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. Journal of the National Cancer Institute, 88, 1550–1559. Oster, G., Thompson, D., Edelsberg, J., Bird, A.P., and Colditz, G.A. (1999). Lifetime health and economic benefits of weight loss among obese persons. American Journal of Public Health, 89, 1536–1542. Owusu, W., Willett, W.C., Ascherio, A., Spiegelman, D., Rimm, E.B., Feskanich, D., and Colditz, G. (1998). Body anthropometry and the risk of hip and wrist fractures in men: results from a prospective study. Obesity Research, 6, 12–19. Owusu, W., Willett, W.C., Feskanich, D., Ascherio, A., Spiegelman, D., and Colditz, G.A. (1997). Calcium intake and the incidence of forearm and hip fractures among men. Journal of Nutrition, 127, 1782–1787.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Paffenbarger, R., Jr., Hyde, R., Wing, A., Lee, I.-M, Jung, D., and Kampert J. (1993). The association of changes in physical activity level and other lifestyle characteristics with mortality among men. New England Journal of Medicine, 328, 538–545. Panush, R.S. and Lane, N.E. (1994). Exercise and the musculoskeletal system. Baillieres Clinical Rheumatology, 8, 79–102. Pate, R.R., Long, B.J., and Heath, G. (1994). Descriptive epidemiology of physical activity in adolescents. Pediatric Exercise Science, 6, 434–447. Pearl, R. (1926). Alcohol and Longevity. New York: Alfred A.Knopf. Pirkle, J.L., Flegal, K.M., Bernert, J.T., Brody, D.J., Etzel, R.A., and Maurer, K.R. (1996). Exposure of the US population to environmental tobacco smoke: The Third National Health and Nutrition Examination Survey, 1988 to 1991. Journal of the American Medical Association, 275, 1233–1240. Pi-Sunyer, F.X. (1993). Medical hazards of obesity. Annals of Internal Medicine, 119, 655– 660. Popham, R., Schmidt, W., and Israelstam, S. (1984). Heavy alcohol consumption and physical health problems: A review of epidemiologic evidence. In R.G.Smart, H.D. Cappell, F.B. Glaser, and Y. Israel (Eds.) Recent Advances in Alcohol and Drug Problems, No. 8, 149–182. New York: Plenum Press. Potter, J. (1997). Hazards and benefits of alcohol. New England Journal of Medicine, 337, 1763–1764. Ravussin, E., Lillioja, S., Knowler, W.C., Christin, L., Freymond, D., Abbott, W.G., Boyce, V., Howard, B.V., and Bogardus, C. (1988). Reduced rate of energy expenditure as a risk factor for body-weight gain. New England Journal of Medicine, 318, 467–472. Reichman, M.E. (1994). Alcohol and breast cancer. Alcohol Health and Research World, 18, 182–184. Renaud, S., Beswick, A., Fehily, A., Sharp, P., and Elwood, P. (1992). Alcohol and platelet aggregation: the Caerphilly prospective heart disease study. American Journal of Clinical Nutrition, 55, 1012–1017. Ries, L.A.G., Miller, B.A., and Hankey, B.F (Eds.) (1996). SEER Cancer Statistics Review, 1973–1993. National Cancer Institute, (NIH Pub. No. 94–2789). Rimm, E.B., Stampfer, M.J., Ascherio, A., Giovannucci, E., Colditz, G.A., and Willett, W.C. (1993). Vitamin E consumption and the risk of coronary heart disease in men. New England Journal of Medicine, 328, 1450–1456. Rimm, E.B., Stampfer, M.J., Giovannucci, E., Ascherio, A., Spiegelman, D., Colditz, G.A., and Willett, W.C. (1995). Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. American Journal of Epidemiology, 141, 1117–1127. Rimm, E.B., Ascherio, A., Giovannucci, E., Spiegelman, D., Stampfer, M.J., and Willett, W.C. (1996). Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. Journal of the American Medical Association, 275, 447–451 Rimm, E., Williams, P., Fosher, K., Criqui, M., and Stampfer, M. (1999). A biological basis for moderate alcohol consumption and lower coronary heart disease risk: A meta-analysis of effects on lipids and hemostatic factors. British Medical Journal, 319, 1523– 1528. Rissanen, A.M., Heliovaara, M., Knekt, P., Reunanen, A., and Aromaa, A. (1991). Determinants of weight gain and overweight in adult Finns. European Journal of Clinical Nutrition, 45, 419–430.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Rockhill, B., Willett, W.C., Hunter, D.J., Manson, J.E., Hankinson, S.E., Spiegelman, D., Colditz, G.A. (1998). Physical activity and breast cancer risk in a cohort of young women. Journal of the National Cancer Institute, 90, 1155–1160. Roizen, J. (1993). Issues in the epidemiology of alcohol and violence. In S.Martin (Ed.) Alcohol and Interpersonal Violence: Fostering Multi-Disciplinary Perspectives, (NIH publication no. 93–3496). U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism. Rose, G. (1992). The Strategy of Preventive Medicine. New York: Oxford University Press. Saadatamand, F., Stinson, F.S., Grant, B.F., and Dufour, M.C. (1997). Surveillance Report #45: Liver Cirrhosis Mortality in the United States: 1970–1994. Rockville, MD: NIAAA Division of Biometry and Epidemiology, Alcohol Epidemiological Data System. Schatzkin, A., Lanze, E., Freedman, L.S., Tangrea, J., Cooper, M.R., Marshall, J.R., Murphy, P.A., Selby, J.V., Shike, M., Schade, R.R., Burt, R.W., Kikendall, J.W., and Cahill, J. (1996). The polyp prevention trial. I Rationale, design, recruitment, and baseline participant characteristics. Cancer Epidemiology Biomarkers Prevention, 5, 375–383. Scheen, A.J. (2000). From obesity to diabetes: Why, when and who? Acta Clinica Belgica, 55, 9–15. Schmidt, W. (1980). Effects of alcohol consumption on health. Journal of Public Health Policy, 1, 25–40. Schoenborn, C. and Marano, M.. (1988). Current estimates from the National Health Interview Survey: United States, 1987. Washington, DC: Government Printing Office. Scholes, D., Stergachis, A., Heidrich, F., Andrilla, H., Holmes, K., and Stamm, W. (1996). Prevention of pelvic inflammatory disease by screening for cervical chlamydia infection. New England Journal of Medicine, 334, 1362–1366. Seidell, J.C. (1995). Obesity in Europe: Scaling an epidemic. International Journal of Obesity and Related Metabolic Disorders, 19 (Suppl 3), S1–S4. Selhub, J., Jacques, P.F., Bostom, A.G., D’Agostino, R.B., Wilson, P.W, Belanger, A.J., O’Leary, D.H., Wolf, P.A., Schaefer, E.J., and Rosenberg, I.H. (1995). Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. New England Journal of Medicine, 332, 286–291. Severson, R.K., Nomura, A.M.Y., Grove, J.S., and Stemmermann, G.N. (1989). A prospective analysis of physical activity and cancer. American Journal of Epidemiology, 130, 522–529. Shephard, R. (1993). Exercise in the prevention and treatment of cancer: an update. Sports Medicine, 15, 258–280. Shephard, R., Verde, T., Thomas, S., and Shek, P. (1991). Physical activity and the immune system. Canadian Journal of Sport Science, 16, 163–185. Sherman, S.E., D’Agostino, R.B., Cobb, J.L., and Kannel, W.B. (1994). Physical activity and mortality in women in the Framingham Heart Study. American Heart Journal, 128, 879–884. Shetty, P.S. (1997) Obesity and physical activity. Accessed on line February 23, 2001. http://www.nutritionfoundationin.org/ARCHIVES/APR97A.HTM Shu, X.O., Hatch, M.C., Mills, J., Clemens, J., and Susser, M. (1995). Maternal smoking, alcohol drinking, caffeine consumption, and fetal growth: results from a prospective study. Epidemiology, 6, 115–120.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Simmons, G., Jackson, R., Swinburn, B., and Yee, R.L. (1996). The increasing prevalence of obesity in New Zealand: Is it related to recent trends in smoking and physical activity? New Zealand Medical Journal, 109, 90–92. Slattery, M., Jacobs, D., and Nichaman, M. (1989). Leisure time physical activity and coronary heart disease death: the US Railroad Study. Circulation, 79, 304–311. Slattery, M.L., Schumacher, M.C., Smith, K.R., West, D.W., and Abd-Elghany, N. (1988). Physical activity, diet, and risk of colon cancer in Utah. American Journal of Epidemiology, 128, 989–999. Smith-Warner, S.A., Spiegelman, D., Yaun, S.S., van den Brandt, P.A., Folsom, A.R., Goldbohm, R.A., Graham, S., Holmberg, L., Howe, G.R., Marshall, J.R., Miller, A.B., Potter, J.D., Speizer, F.E., Willett, W.C., Wolk, A., and Hunter, D.J. (1998). Alcohol and breast cancer in women: A pooled analysis of cohort studies. Journal of the American Medical Association , 279, 535–540. Snow-Harter, C., Shaw, J.M., and Matkin, C.C. (1996). Physical activity and risk of osteoporosis. In R.Marcus, D.Feldman, and J.Kelsey (Eds.) Osteoporosis (pp. 511– 528). San Diego, CA: Academic Press. Sonnenschein, E., Toniolo, P., Terry, M.B., Bruning, P.F., Kato, I., Koenig, K.L., and Shore, R.E. (1999). Body fat distribution and obesity in pre- and postmenopausal breast cancer. International Journal of Epidemiology 28, 1026–1031. St. Louis, M.E., Wasserheit, J.N., and Gayle, H.D. (1997). Editorial: Janus considers the HIV pandemic—harnessing recent advances to enhance AIDS prevention. American Journal of Public Health, 87, 10–12. Stamm, W. and Holmes, K. (1990). Chlamydia trachomatis infections in the adult. In K. Holmes, P.A. Mardh, P.Sparling, P.Weisner, W.Cates, S.Lemon et al. (Eds.) Sexually Transmitted Diseases, 2nd edition (pp. 181–193). New York: McGraw-Hill, Inc. Stampfer, M.J., Hennekens, C.H., Manson, J.E., Colditz, G.A., Rosner, B., and Willett, W.C. (1993). Vitamin E consumption and the risk of coronary disease in women. New England Journal of Medicine, 328, 1444–1449. Steinmetz, K.A. and Potter, J.D. (1991). Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes and Control, 2, 427–442. Stock, J.L., Bell, M.A., Boyer, D.K., and Connell, F.A. (1997) Adolescent pregnancy and sexual risk-taking among sexually abused girls. Family Planning Perspective, 29, 200– 203, 227. Strunin, L. and Hingson, R. (1992). Alcohol, drugs, and adolescent sexual behavior. International Journal of the Addictions, 27, 129–146. Strunin, L. and Hingson, R. (1993). Alcohol use and risk for HIV infection. Alcohol Health and Research World, 17, 35–38. Substance Abuse and Mental Health Services Administration (1993). Race/ethnicity, socioeconomic status, and drug abuse (No. (SMA) 93–2062). Washington, DC: U.S. Department of Health and Human Services. Tabar, L., Faberberg, G., Day, N., and Holmberg, L. (1987). What is the optimum interval between mammographic screening examinations? An analysis based on the latest results of the Swedish two-county breast cancer screening trial. International Journal of Cancer, 55, 547–551. Tanne, J. (1998). US has epidemic of sexually transmitted disease. British Medical Journal, 317, 1616. Taubes, G. (1997). The breast-screening brawl. Science, 275, 1056–1059.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences Taubes, G. (1998). As obesity rates rise, experts struggle to explain why. Science, 280, 1367–1368. Thor, P., Konturek, J., Konturek, S., and Anderson, J. (1985). Role of prostaglandins in control of intestinal motility. American Journal of Physiology, 248, G353–G359. Thun, M., Peto, R., Lopez, A., Monaco, J.H., Henley, S.J., Heath, C.W., Jr., and Doll, R. (1997). Alcohol consumption and mortality among middle-aged and elderly US adults. New England Journal of Medicine, 337, 1705–1714. Thune, I., Brenn, T., Lund, E., and Gaard, M. (1997). Physical activity and the risk of breast cancer. New England Journal of Medicine, 336, 1269–1275. Towler, B., Irwig, L., Glasziou, P., Kewenter, J., Weller, D., and Silagy, C. (1998). A systematic review of the effects of screening for colorectal cancer using the faecal occult blood test, hemoccult. British Medical Journal, 317, 559–565. Troiano, R.P. and Flegal, K.M. (1998). Overweight children and adolescents: Description, epidemiology, and demographics. Pediatrics, 101, 497–504. Tseng, B.S., Marsh, D.R., Hamilton, M.T., and Booth, F.W. (1995). Strength and aerobic training attenuate muscle wasting and improve resistance to the development of disability with aging. Journal of Gerontology, 50A, 113–119. U.S. Preventive Services Task Force (1989). Guide to Clinical Preventive Services. Philadelphia: Williams and Wilkins. U.S. Preventive Services Task Force (1996). Guide to Clinical Preventive Services, 2nd edition. Washington, DC: U.S. Department of Health and Human Services. USDA (U.S. Department of Agriculture), USDHHS (U. S. Department of Health and Human Services) (1995a). Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans. Beltsville, MD: U.S. Department of Agriculture, Agricultural Research Service. USDA (U.S. Department of Agriculture), USDHHS (U. S. Department of Health and Human Services) (1995b). Nutrition and Your Health: Dietary Guidelines for Americans. Washington, DC: U.S. Government Printing Office. USDA (U.S. Department of Agriculture) (1995a). Dietary Guidelines for Americans. 4th edition. (USDA Home and Garden Bulletin No. 232). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service. USDA (U.S. Department of Agriculture) (1995b). The Healthy Eating Index (USDA Publication CNPP-1). Washington, DC: U.S. Department of Agriculture, Center for Nutrition Policy and Promotion. USDA (U.S. Department of Agriculture) (1996). USDA finds more and more Americans eat out, offers tips for making healthier food choices. (Press release). Available: http://www.ars.usda.gov/is/pr/eatout1196.htm [1999, November 11]. USDA (U.S. Department of Agriculture) (1997). What we eat in America: Results from the 1994–96 Continuing Survey of Food Intakes by Individuals. (Fact Sheet). Beltsville, MD: Agricultural Research Service, Human Nutrition Research Center, Food Surveys Research Group. USDHHS (U.S. Department of Health and Human Services) (1980) Behavioral and Psychosocial Issues in Diabetes: Proceedings of the National Conference. B.A.Hamburg, L.F.Lipsett, G.E.Inoff, and A.L.Drash(Eds.). NIH publication no. 80–1993

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences USDHHS (U.S. Department of Health and Human Services) (1983). The Health Consequences of Smoking: Cardiovascular Disease. A Report of the Surgeon General. Rockville, MD: Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health. USDHHS (U.S. Department of Health and Human Services) (1986). The Health Consequences of Involuntary Smoking. A Report of the Surgeon General Rockville, MD: Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health. USDHHS (U.S. Department of Health and Human Services) (1988a). The Health Consequences of Smoking: Nicotine Addiction: A Report of the Surgeon General (DHHS publication no. (CDC) 88–8406). Rockville, MD: Centers for Disease Control, Center for Health Promotion and Education, Office on Smoking and Health. USDHHS (U.S. Department of Health and Human Services) (1988b). The Surgeon General’s Report on Nutrition and Health. (DHHS publication no. (PHS) 88–050210). Washington, DC: Public Health Service. USDHHS (U.S. Department of Health and Human Services) (1989). Reducing the Health Consequences of Smoking: 25 Years of Progress. A Report of the Surgeon General (DHHS publication no. (CDC) 89–8411). Atlanta, GA: Centers for Disease Control, National Center for Chronic Disease Prevention and Health Promotion, Office of Smoking and Health. USDHHS (U.S. Department of Health and Human Services) (1990). The Health Benefits of Smoking Cessation. A Report of the Surgeon General (DHHS publication no. (CDC) 90–8416). Rockville, MD: Centers for Disease Control, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. USDHHS (U.S. Department of Health and Human Services) (1993). Eighth Special Report to Congress on Alcohol And Health. Bethesda, MD: National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism. USDHHS (U.S. Department of Health and Human Services) (1996). Physical Activity and Health: A Report of the Surgeon General Atlanta, GA: Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion. USDHHS (U.S. Department of Health and Human Services) (1997a). Ninth Special Report to the U.S. Congress on Alcohol and Health from the Secretary of Human Services (NIH publication no. 97–4017). Bethesda, MD: National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism. USDHHS (U.S. Department of Health and Human Services) (1997b). Sexually Transmitted Disease Surveillance, 1996. Atlanta, GA: Centers for Disease Control and Prevention, Division of STD Prevention. USDHHS (U.S. Department of Health and Human Services) (2000). Healthy People 2010: Understanding and improving health. Washington, DC: U.S. Department of Health and Human Services. USDHHS (U.S. Department of Health and Human Services). (1994). Preventing Tobacco Use Among Young People. A Report of the Surgeon General. Atlanta, GA: Centers for Disease Control, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.

OCR for page 87
Health and Behavior: The Interplay of Biological, Behavioral, and Societal Influences USDHHS (U.S. Department of Health and Human Services). (1995). The Physicians Guide to Helping Patients with Alcohol Problems (NIH publication no. 95–3769). Bethesda, MD: National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism. USEPA (U.S. Environmental Protection Agency) (1992). Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders. (EPA publication no. EPA/600/6– 90/006F). Washington, DC: U.S. Government Printing Office. Ventura, S.J., Peters, K.D., Martin, J.A., and Maurer, J.D. (1997). Births and deaths: United States, 1996. Monthly Vital Statistics Report, 46. Hyattsville, MD: National Center for Health Statistics. Walsh, R.A. (1994). Effects of maternal smoking on adverse pregnancy outcomes: examination of the criteria of causation. Human Biology, 66, 1059–1092. Wasson, J., Cushman, C., Bruskewitz, R., Littenberg, B., Mulley, A.G., Jr., and Wennberg, J.E. (1993). A structured literature review of treatment for localized prostate cancer. Archives of Family Medicine, 2, 487–493. Whittemore, A.S., Wu-Williams, A.H., Lee, M., Zheng, S., Gallagher, R.P., Jiao, D.A., Zhou, L., Wang, X.H., Chen, K., Jung, D., Teh, C-Z., Chengde, L., Yao, X.J., Paffenbarger, R.S., Jr., and Henderson, B.E. (1990). Diet, physical activity and colorectal cancer among Chinese in North America and China. Journal of the National Cancer Institute, 82, 915–926. Willett, W.C. (1998). Nutritional Epidemiology. In K.J.Rothman and S.Greenland (Eds.) Modern Epidemiology (pp. 623–642). Philadelphia: Lippincott-Raven Publishers. Willett, W.C. and Ascherio, A. (1994). Trans fatty acids: Are the effects only marginal? American Journal of Public Health, 84, 722–724. Willett, W.C., Manson, J.E., Stampfer, M.J., Colditz, G.A., Rosner, B., Speizer, F.E., and Hennekens, C.H. (1995). Weight, weight change, and coronary heart disease in women: Risk within the ‘normal’ weight range. The Journal of the American Medical Association, 273, 461–465. Willett, W.C., Stampfer, M.J., Manson, J.E., Colditz, G.A., Speizer, F.E., Rosner, B.A., Sampson, L.A., and Hennekens, C.H. (1993). Intake of trans fatty acids and risk of coronary heart disease among women. Lancet, 341, 581–585. Wu, A.H., Paganini-Hill, A., Ross, R.K., and Henderson, B.E. (1987). Alcohol, physical activity and other risk factors for colorectal cancer: a prospective study. British Journal of Cancer, 55, 687–694. Zakhari, S. (1997). Alcohol and the cardiovascular system: Molecular mechanisms for beneficial and harmful action. Alcohol Health and Research World, 21, 21–29. Ziegler, R.G., Mayne, S.T., and Swanson, C.A. (1996). Nutrition and lung cancer. Cancer Causes and Control, 7, 157–177.