Executive Summary

This Executive Summary is reprinted from the Astronomy and Astrophysics Survey Committee report, Astronomy and Astrophysics in the New Millennium (National Academy Press, Washington, D.C., 2001). It should be read in conjunction with the preface to this volume of panel reports; the preface explains the relationship between the recommendations of the survey committee and the recommendations of the panels.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports Executive Summary This Executive Summary is reprinted from the Astronomy and Astrophysics Survey Committee report, Astronomy and Astrophysics in the New Millennium (National Academy Press, Washington, D.C., 2001). It should be read in conjunction with the preface to this volume of panel reports; the preface explains the relationship between the recommendations of the survey committee and the recommendations of the panels.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports ASTRONOMY AND ASTROPHYSICS IN THE NEW MILLENNIUM In the first decade of the new millennium, we are poised to take a giant step forward in understanding the universe and our place within it. The decade of the 1990s saw an enormous number of exciting discoveries in astronomy and astrophysics. For example, humanity’s centuries-long quest for evidence of the existence of planets around other stars resulted in the discovery of extrasolar planets, and the number of planets known continues to grow. Astronomers peered far back in time, to only a few hundred thousand years after the Big Bang, and found the seeds from which all galaxies, such as our own Milky Way, were formed. At the end of the decade came evidence for a new form of energy that may pervade the universe. Nearby galaxies were found to harbor extremely massive black holes in their centers. Distant galaxies were discovered near the edge of the visible universe. In our own solar system, the discovery of Kuiper Belt objects—some of which lie beyond the orbit of Pluto—opens a new window onto the history of the solar system. This report presents a comprehensive and prioritized plan for the new decade that builds on these and other discoveries to pursue the goal of understanding the universe, a goal that unites astronomers and astrophysicists with scientists from many other disciplines. The Astronomy and Astrophysics Survey Committee was charged with surveying both ground- and space-based astronomy and recommending priorities for new initiatives in the decade 2000 to 2010. In addition, the committee was asked to consider the effective implementation of both the proposed initiatives and the existing programs. The committee’s charge excludes in situ studies of Earth and the planets, which are covered by other National Research Council committees: the Committee on Planetary and Lunar Exploration and the Committee on Solar and Space Physics. To carry out its mandate, the committee established nine panels with more than 100 distinguished members of the astronomical community. Broad input was sought through the panels, in forums held by the American Astronomical Society, and in meetings with representatives of the international astronomical community. The committee’s recommendations build on those of four previous decadal surveys (NRC, 1964, 1972, 1982, 1991), in particular the report of the 1991 Astronomy and Astrophysics Survey Committee, The Decade of

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports Discovery in Astronomy and Astrophysics (referred to in this report as the 1991 survey; also known as the Bahcall report). The fundamental goal of astronomy and astrophysics is to understand how the universe and its constituent galaxies, stars, and planets formed, how they evolved, and what their destiny will be. To achieve this goal, researchers must pursue a strategy with several elements: Survey the universe and its constituents, including galaxies as they evolve through cosmic time, stars and planets as they form out of collapsing interstellar clouds in our galaxy, interstellar and intergalactic gas as it accumulates the elements created in stars and supernovae, and the mysterious dark matter and perhaps dark energy that so strongly influence the large-scale structure and dynamics of the universe. Use the universe as a unique laboratory for probing the laws of physics in regimes not accessible on Earth, such as the very early universe or near the event horizon of a black hole. Search for life beyond Earth, and if it is found, determine its nature and its distribution. Develop a conceptual framework that accounts for all that astronomers have observed. Several key problems are particularly ripe for advances in this decade: Determine the large-scale properties of the universe: the amount, distribution, and nature of its matter and energy, its age, and the history of its expansion. Study the dawn of the modern universe, when the first stars and galaxies formed. Understand the formation and evolution of black holes of all sizes. Study the formation of stars and their planetary systems, and the birth and evolution of giant and terrestrial planets. Understand how the astronomical environment affects Earth. These scientific themes, all of which now appear to offer particular promise for immediate progress, are only part of the much larger tapestry that is modern astronomy and astrophysics. For example, scientists cannot hope to understand the formation of black holes without understanding the late stages of stellar evolution, and the full significance of

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports observations of the galaxies in the very early universe will not be clear until it is clear how these galaxies have evolved since that time. Although the new initiatives that the committee recommends will advance knowledge in many other areas as well, they were selected explicitly to address one or more of the important themes listed above. In addition, the committee believes that astronomers can make important contributions to education. Building on widespread interest in astronomical discoveries, astronomers should: Use astronomy as a gateway to enhance the public’s understanding of science and as a catalyst to improve teachers’ education in science and to advance interdisciplinary training of the technical workforce. OPTIMIZING THE RETURN ON THE NATION’S INVESTMENT IN ASTRONOMY AND ASTROPHYSICS The United States has been generous in its support of astronomy and astrophysics and as a result enjoys a leading role in almost all areas of astronomy and astrophysics. So that the nation can continue to obtain maximum scientific return on its investment, the committee makes several recommendations to optimize the system of support for astronomical research. BALANCING NEW INITIATIVES WITH THE ONGOING PROGRAM An effective program of astronomy and astrophysics research must balance the need for initiatives to address new opportunites with completion of projects accorded high scientific priority in previous surveys. The committee reaffirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee (NRC, 1991) by endorsing the completion of the Space Infrared Telescope Facility (SIRTF), the Millimeter Array (MMA; now part of the Atacama Large Millimeter Array, or ALMA), the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Astrometric Interferometry Mission (now called the Space Interferometry Mission, or SIM). Consis-

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports tent with the recommendations of the Task Group on Space Astronomy and Astrophysics (NRC, 1997), the committee stresses the importance of studying the cosmic microwave background with the Microwave Anisotropy Probe (MAP) mission, the European Planck Surveyor mission, and ground-based and balloon programs. The committee endorses U.S. participation in the European Far Infrared Space Telescope (FIRST), and it endorses the planned continuation of the operation of the Hubble Space Telescope (HST) at a reduced cost until the end of the decade. To achieve the full scientific potential of a new facility, it is essential that, prior to construction, funds be identified for operation of the facility, for renewal of its instrumentation, and for grants for data analysis and the development of associated theory. NASA already follows this recommendation in large part by including Mission Operations and Data Analysis (MO&DA) in its budgeting for new missions. The committee recommends that funds for associated theory be included in MO&DA as well. It recommends further that the National Science Foundation include funds for facility operation, renewal of instrumentation, and grants for data analysis and theory along with the construction costs in the budgets for all new federally funded, ground-based facilities. These recommendations are consistent with those of the 1991 survey. For the purpose of total project budget estimation, the committee adopted a model in which operation amounts to 7 percent of the capital cost per year and instrumentation amounts to 3 percent per year for the first 5 years of operation. The committee recommends that total project budgets provide for grants for data analysis and associated theory at the rate of 3 percent of the capital cost per year for major facilities and 5 percent per year for moderate ones. On the basis of this model, the committee has included funds for operations, instrumentation, and grants for a period of 5 years in the cost estimates provided in this report for most ground-based initiatives. Adequate funding for unrestricted grants that provide broad support for research, students, and postdoctoral associates is required to ensure the future vitality of the field; therefore new initiatives should not be undertaken at the expense of the unrestricted grants program.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports Grants not tied to a facility or program—unrestricted grants—often drive the future directions of astronomy. STRENGTHENING GROUND-BASED ASTRONOMY AND ASTROPHYSICS The committee addresses several structural issues in ground-based astronomy and astrophysics. U.S. ground-based optical and infrared facilities, radio facilities, and solar facilities should each be viewed by the National Science Foundation (NSF) and the astronomical community as a single integrated system drawing on both federal and nonfederal funding sources. Effective national organizations are essential to coordinate, and to ensure the success and efficiency of, these systems. Universities and independent observatories should work with the national organizations to ensure the success of these systems. Cross-disciplinary competitive reviews should be held about every 5 years for all NSF astronomy facilities. In these reviews, it should be standard policy to set priorities and consider possible closure or privatization. The National Radio Astronomy Observatory (NRAO) and the National Astronomy and Ionosphere Center (NAIC) currently serve as effective national organizations for radio astronomy, and the National Solar Observatory (NSO) does so for solar physics. The National Optical Astronomy Observatories (NOAO) as currently functioning and overseen does not fulfill this role for ground-based optical and infrared astronomy. A plan for the transition of NOAO to an effective national organization for ground-based optical and infrared astronomy should be developed, and a high-level external review, based on appropriate, explicit criteria, should be initiated. The Department of Energy (DOE) supports a broad range of programs in particle and nuclear astrophysics and in cosmology. The scientific payoff of this effort would be even stronger with a clearly articulated strategic plan for DOE’s programs that involve astrophysics. Given the increasing involvement of the Department of Energy in projects that involve astrophysics, the committee

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports recommends that DOE develop a strategic plan for astrophysics that would lend programmatic coherence and facilitate coordination and cooperation with other agencies on science of mutual interest. ENSURING THE DIVERSITY OF NASA MISSIONS NASA’s Great Observatories have revolutionized understanding of the cosmos, while the extremely successful Explorer program provides targeted small-mission opportunities for advances in many areas of astronomy and astrophysics. The committee endorses the continuation of a vigorous Explorer program. There are now fewer opportunities for missions of moderate size, however, despite the enormous role such missions have played in the past. NASA should continue to encourage the development of a diverse range of mission sizes, including small, moderate, and major, to ensure the most effective returns from the U.S. space program. INTEGRATING THEORY CHALLENGES INTO THE NEW INITIATIVES The new initiatives recommended below are motivated in large part by theory, which is also key to interpreting the results. Adequate support for theory, including numerical simulation, is a cost-effective means for maximizing the impact of the nation’s capital investment in science facilities. The committee therefore recommends that To encourage theorists to contribute to the planning of missions and facilities and to the interpretation and understanding of the results, one or more explicitly funded theory challenges should be integrated with most moderate or major new initiatives. COORDINATING PROGRAMS AMONG FEDERAL AGENCIES Because of the enormous scale of contemporary astronomical projects and the need for investigations that cross wavelength and discipline boundaries, cooperation among the federal agencies that

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports support astronomical research often has benefits. To determine when interagency collaboration would be fruitful, each agency should have in place a strategic plan for astronomy and astrophysics and should also have cross-disciplinary committees (such as DOE and NSF’s Scientific Assessment Group for Experiments in Non-Accelerator Physics [SAGENAP] and NASA’s Space Science Advisory Committee [SSAC]) available to evaluate proposed collaborations. The Office of Science and Technology Policy could play a useful role in facilitating such interagency cooperation. COLLABORATING WITH INTERNATIONAL PARTNERS International collaboration enables projects that are too costly for the United States alone and enhances the scientific return on projects by bringing in the scientific and technical expertise of international partners. In many cases, international collaboration provides opportunities for U.S. astronomers to participate in major international projects for a fraction of the total cost, as in the case of the European Solar and Heliospheric Observatory (SOHO), XMM-Newton, Planck Surveyor, and FIRST missions, and the Japanese Advanced Satellite for Cosmology and Astrophysics mission. Valuable opportunities for international collaboration exist for smaller missions as well. Collaborations on major projects require the full support of the participating scientific communities, which can be ensured if the projects are among the very highest priorities of the participants, as is the case with ALMA. The committee affirms the value of international collaboration for ground- and space-based projects of all sizes. International collaboration plays a crucial role in a number of this committee’s recommended initiatives, including the Next Generation Space Telescope, the Expanded Very Large Array, the Gamma-ray Large Area Space Telescope, the Laser Interferometer Space Antenna, the Advanced Solar Telescope, and the Square Kilometer Array technology development, and it could play a significant role in other recommended initiatives as well. NEW INVESTMENTS IN ASTRONOMY AND ASTROPHYSICS Many mysteries confront us in the quest to understand our place in the universe. How did the universe begin? What is the nature of the

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports dark matter and the dark energy that pervade the universe? How did the first stars and galaxies form? Researchers infer the existence of stellar mass black holes in our galaxy and supermassive ones in the nuclei of galaxies. How did they form? The discovery of extrasolar planets has opened an entirely new chapter in astronomy, bringing a host of unresolved questions. How do planetary systems form and evolve? Are planetary systems like our solar system common in the universe? Do any extrasolar planetary systems harbor life? Even a familiar object like the Sun poses many mysteries. What causes the small variations in the Sun’s luminosity that can affect Earth’s climate? What is the origin of the eruptions on the solar surface that cause “space weather”? To seek the answers to these questions and many others described in this report, the committee recommends a set of new initiatives for this decade that will substantially advance the frontiers of human knowledge. Table ES.1 presents these initiatives, combined for both ground- and space-based astronomy, in order of priority. The committee set the priorities primarily on the basis of scientific merit, but it also considered technical readiness, cost-effectiveness, impact on education and public outreach, and the relation to other projects. The initiatives were divided into three categories—major, moderate, and small—that were defined separately for ground- and space-based projects based on estimated cost (see Chapter 1). The estimated cost of the recommended program for the decade 2000 to 2010 is $4.7 billion in FY2000 dollars, about 20 percent greater than the $3.9 billion inflation-adjusted cost of the recommendations of the 1991 survey. Two of the recommended projects, the Terrestrial Planet Finder (TPF) and the Single Aperture Far Infrared (SAFIR) Observatory, could start near the end of this decade or at the beginning of the next. The committee has assumed that about 15 percent of the total estimated cost for these two projects will fall in this decade. MAJOR INITIATIVES The Next Generation Space Telescope (NGST), the committee’s top-priority recommendation, is designed to detect light from the first stars and to trace the evolution of galaxies from their formation to the present. It will revolutionize understanding of how stars and planets form in our galaxy today. NGST is an 8-m-class infrared space telescope with 100 times the sensitivity and 10 times the image sharpness of the Hubble Space Telescope in the

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports TABLE ES.1 Prioritized Initiatives (Combined Ground and Space) and Estimated Federal Costs for the Decade 2000 to 2010a,b Initiative Costc ($M) Major Initiatives   Next Generation Space Telescope (NGST)d 1,000 Giant Segmented Mirror Telescope (GSMT)d 350 Constellation-X Observatory (Con-X) 800 Expanded Very Large Array (EVLA)d 140 Large-aperture Synoptic Survey Telescope (LSST) 170 Terrestrial Planet Finder (TPF)e 200 Single Aperture Far Infrared (SAFIR) Observatorye 100 Subtotal for major initiatives 2,760 Moderate Initiatives   Telescope System Instrumentation Program (TSIP) 50 Gamma-ray Large Area Space Telescope (GLAST)d 300 Laser Interferometer Space Antenna (LISA)d 250 Advanced Solar Telescope (AST)d 60 Square Kilometer Array (SKA) technology development 22 Solar Dynamics Observatory (SDO) 300 Combined Array for Research in Millimeter-wave Astronomy (CARMA)d 11 Energetic X-ray Imaging Survey Telescope (EXIST) 150 Very Energetic Radiation Imaging Telescope Array System (VERITAS) 35 Advanced Radio Interferometry between Space and Earth (ARISE) 350 Frequency Agile Solar Radio telescope (FASR) 26 South Pole Submillimeter-wave Telescope (SPST) 50 Subtotal for moderate initiatives 1,604 Small Initiatives   National Virtual Observatory (NVO) 60 Other small initiativesf 246 Subtotal for small initiatives 306 DECADE TOTAL 4,670 aCost estimates for ground-based capital projects include technology development plus funds for operations, new instrumentation, and facility grants for 5 years. bCost estimates for space-based projects exclude technology development. cBest available estimated costs to U.S. government agencies in millions of FY2000 dollars and rounded. Full costs are given for all initiatives except TPF and the SAFIR Observatory. dCost estimate for this initiative assumes significant additional funding to be provided by international or private partner; see Astronomy and Astrophysics in the New Millennium: Panel Reports (NRC, 2001) for details. eThese missions could start at the turn of the decade. The committee attributes $200 million of the $1,700 million total estimated cost of TPF to the current decade and $100 million of the $600 million total estimated cost of the SAFIR Observatory to the current decade. fSee Chapter 1 for details.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports infrared. Having NGST’s sensitivity extend to 27 µm would add significantly to its scientific return. Technology development for this program is well under way. The European Space Agency and the Canadian Space Agency plan to make substantial contributions to the instrumentation for NGST. The Giant Segmented Mirror Telescope (GSMT), the committee’s top ground-based recommendation and second priority overall, is a 30-m-class ground-based telescope that will be a powerful complement to NGST in tracing the evolution of galaxies and the formation of stars and planets. It will have unique capabilities in studying the evolution of the intergalactic medium and the history of star formation in our galaxy and its nearest neighbors. GSMT will use adaptive optics to achieve diffraction-limited imaging in the atmospheric windows between 1 and 25 µm and unprecedented light-gathering power between 0.3 and 1 µm. The committee recommends that the technology development for GSMT begin immediately and that construction start within the decade. Half the total cost should come from private and/or international partners. Open access to GSMT by the U.S. astronomical community should be directly proportional to the investment by the NSF. The Constellation-X Observatory is a suite of four powerful x-ray telescopes in space that will become the premier instrument for studying the formation and evolution of black holes of all sizes. Each telescope will have high spectral resolution over a broad energy range, enabling it to study quasars near the edge of the visible universe and to trace the evolution of the chemical elements. The technology issues are well in hand for a start in the middle of this decade. The Expanded Very Large Array (EVLA)—the revitalization of the VLA, the world’s foremost centimeter-wave radio telescope— will take advantage of modern technology to attain unprecedented image quality with 10 times the sensitivity and 1,000 times the spectroscopic capability of the existing VLA. The addition of eight new antennas will provide an order-of-magnitude increase in angular resolution. With resolution comparable to that of ALMA and NGST, but operating at much longer wavelengths, the EVLA will be a powerful complement to these instruments for studying

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports the formation of protoplanetary disks and the earliest stages of galaxy formation. The Large-aperture Synoptic Survey Telescope (LSST) is a 6.5-m-class optical telescope designed to survey the visible sky every week down to a much fainter level than that reached by existing surveys. It will catalog 90 percent of the near-Earth objects larger than 300 m and assess the threat they pose to life on Earth. It will find some 10,000 primitive objects in the Kuiper Belt, which contains a fossil record of the formation of the solar system. It will also contribute to the study of the structure of the universe by observing thousands of supernovae, both nearby and at large redshift, and by measuring the distribution of dark matter through gravitational lensing. All the data will be available through the National Virtual Observatory (see below under “Small Initiatives”), providing access for astronomers and the public to very deep images of the changing night sky. The Terrestrial Planet Finder (TPF) is the most ambitious science mission ever attempted by NASA. It is currently envisaged as a free-flying infrared interferometer designed to study terrestrial planets around nearby stars—to find them, characterize their atmospheres, and search for evidence of life—and to obtain images of star-forming regions and distant galaxies with unprecedented resolution. The committee’s recommendation of this mission is predicated on the assumptions that TPF will revolutionize major areas of both planetary and nonplanetary science and that, prior to the start of TPF, ground- and space-based searches will confirm the expectation that terrestrial planets are common around solar-type stars. Both NGST and SIM lie on the technology path necessary to achieve TPF. The Single Aperture Far Infrared (SAFIR) Observatory is an 8-m-class space-based telescope that will study the important and relatively unexplored spectral region between 30 and 300 µm. It will enable the study of galaxy formation and the earliest stage of star formation by revealing regions too enshrouded by dust to be studied by NGST, and too warm to be studied effectively with ALMA. As a follow-on to NGST, SAFIR could start toward the end of the decade, and it could form the basis for developing a far-infrared interferometer in the succeeding decade.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports MODERATE INITIATIVES GROUND-BASED PROGRAMS The committee’s recommended highest-priority moderate initiative overall is the Telescope System Instrumentation Program (TSIP), which would substantially increase NSF funding for instrumentation at large telescopes owned by independent observatories and provide new observing opportunities for the entire U.S. astronomical community. Its second priority among ground-based initiatives is the Advanced Solar Telescope (AST), which offers the prospect of revolutionizing understanding of magnetic phenomena in the Sun and in the rest of the universe. The committee’s next recommendation is that a program be established to plan and develop technology for the Square Kilometer Array, an international centimeter-wave radio telescope for the second decade of the century. In order of priority, the other recommended moderate initiatives are the following: The Combined Array for Research in Millimeter-wave Astronomy (CARMA) will be a powerful millimeter-wave array in the Northern Hemisphere. The study of very-high-energy gamma rays will take a major step forward with the construction of the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The Frequency Agile Solar Radio telescope (FASR) will apply modern technology to provide unique data on the Sun at radio wavelengths. The South Pole Submillimeter-wave Telescope (SPST) will take advantage of the extremely low opacity of the Antarctic atmosphere to carry out surveys at submillimeter wavelengths that are possible nowhere else on Earth. SPACE-BASED PROGRAMS The committee’s top recommendation for a moderate space-based mission is the Gamma-ray Large Area Space Telescope (GLAST). This joint NASA-DOE mission will provide observations of gamma rays from 10 MeV to 300 GeV with six times the effective area, six times the field of view, and substantially better angular resolution than the Energetic Gamma Ray Experiment aboard the Compton Gamma Ray Observatory. The committee’s second-priority space-based project is the Laser Interferometer Space Antenna (LISA), which will be able to detect gravity waves from merging supermassive black holes throughout the visible universe and from close binary stars throughout our galaxy. The committee has assumed that LISA’s cost will be shared with the European Space

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports Agency. Four additional space-based missions have priority. The Solar Dynamics Observer (SDO), a successor to the pathbreaking SOHO mission, will study the outer convective zone of the Sun and the structure of the solar corona. The highly variable hard-x-ray sky will be mapped by the Energetic X-ray Imaging Survey Telescope (EXIST), which will be attached to the International Space Station. The Advanced Radio Interferometry between Space and Earth (ARISE) mission is an orbiting antenna that will combine with the ground-based VLBA to provide an order-of-magnitude increase in resolution for studying the regions near supermassive black holes in active galactic nuclei. SMALL INITIATIVES Several small initiatives recommended by the committee span both ground and space. The first among them—the National Virtual Observatory (NVO) —is the committee’s top priority among the small initiatives. The NVO will provide a “virtual sky” based on the enormous data sets being created now and the even larger ones proposed for the future. It will enable a new mode of research for professional astronomers and will provide to the public an unparalleled opportunity for education and discovery. The remaining recommendations for small initiatives are not prioritized. The committee recommends establishing a laboratory astrophysics program and a national astrophysical theory postdoctoral program for both ground- and space-based endeavors. Augmentation of NASA’s Astrophysics Theory Program will help restore a balance between the acquisition of data and the theory needed to interpret it. Ultralong-duration balloon flights offer the prospect of carrying out small space-based experiments at a small fraction of the cost of satellites. The Low Frequency Array (LOFAR), a joint Dutch-U.S. initiative, will dramatically increase knowledge of the universe at radio wavelengths longer than 2 m. The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will address fundamental questions about the origin of cosmic rays. Expansion of the Synoptic Optical Long-term Investigation of the Sun (SOLIS) will permit investigation of the solar magnetic field over an entire solar cycle. TECHNOLOGY Technological innovation has often enabled astronomical discovery.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports Advances in technology in this decade are a prerequisite for many of the initiatives recommended in this report as well as for initiatives in the next decade. For the recommended space-based initiatives, technology investment as specified in the existing NASA technology road map is an assumed prerequisite for the cost estimates given in Table ES.1. It is essential to maintain funding for these initiatives if NASA is to keep these missions on schedule and within budget. The committee endorses NASA’s policy of completing a mission’s technological development before starting the mission. The committee similarly endorses such a policy as the NSF is applying it to the design and development of ALMA. For possible ground-based initiatives in the decade 2010 to 2020, investment is required in very large, high-speed digital correlators; in infrared interferometry; and in specialized dark-matter detectors. Future space-based initiatives require investment in spacecraft communication and x-ray interferometry, as well as technology for the next-generation observatories. Such technology will include energy-resolving array detectors for optical, ultraviolet, and x-ray wavelengths; far-infrared array detectors; refrigerators; large, lightweight optics; and gamma-ray detectors. ASTRONOMY’S ROLE IN EDUCATION Because of its broad public appeal, astronomy has a unique role to play in education and public outreach. The committee recommends that the following steps be taken to exploit the potential of astronomy for enhancing education and public understanding of science: Expand and improve the opportunities for astronomers to engage in outreach to the K-12 community. Establish more pilot partnerships between departments of astronomy and education at a few universities to develop exemplary science courses for preservice teachers. Improve communication, planning, and coordination among federal programs that fund educational initiatives in astronomy. Increase investment toward improving public understanding of the achievements of all NSF-funded science and facilities, especially in the area of astronomy.

OCR for page 1
Astronomy and Astrophysics in the New Millennium: Panel Reports This page in the original is blank.