alum) had mild reactions. However, studies of the anthrax vaccine have not used active surveillance to systematically evaluate long-term health outcomes. Unfortunately, this situation is typical for all but a few vaccines.

The committee concludes that there is sufficient evidence of an association between anthrax vaccination and transient acute local and systemic effects (e.g., redness, swelling, fever) typically associated with vaccination.

The committee concludes that there is inadequate/insufficient evidence to determine whether an association does or does not exist between anthrax vaccination and long-term adverse health effects.

Botulinum Toxoid

Botulinum toxins, known primarily for causing cases of foodborne botulism, are produced by the anaerobic bacterium Clostridium botulinum. Different strains of the bacillus produce seven distinct botulinum toxins (A–G). These toxins are among the most toxic compounds per body weight of agent, with an LD50 of 0.001 μg/kg in mice (USAMRIID, 1996).

Work on modifying the botulinum toxin to the nontoxic form of a toxoid began in 1924. A bivalent toxoid (for serotypes A and B) was developed in the United States in the 1940s. Further research led to a pentavalent toxoid (serotypes A–E) first produced in large lots by Parke, Davis, and Company in 1958 under contract to the U.S. Army (Anderson and Lewis, 1981). The current botulinum toxoid vaccine, a pentavalent toxoid (serotypes A–E), is in Investigational New Drug status. The toxoid has been administered to volunteers for testing purposes and to occupationally at-risk workers. The schedule for the pentavalent toxoid calls for subcutaneous injections at 0, 2, and 12 weeks, followed by annual boosters. Recent advances in molecular cloning techniques and new knowledge about the molecular mechanisms of action of the toxins have opened up avenues for new botulinum vaccine development (Middlebrook, 1995).

Conclusions on the Health Effects of Botulinum Toxoid

Early studies of the initial univalent botulinum toxoids in the 1940s reported a significant number of local and systemic reactions (Middlebrook and Brown, 1995). Several studies that primarily focused on the efficacy of the botulinum toxoid vaccine (Fiock et al., 1962, 1963) noted moderate local or systemic reactions. Studies of the botulinum toxoid vaccine have not used active surveillance to systematically evaluate long-term health outcomes. This situation is unfortunately typical for all but a few vaccines.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement