The Need for New Biotechnological Tools for Conservation of Marine Environments

Michael Smolen

World Wildlife Fund is a conservation organization. We do not have laboratories; however, we have active science programs in which we seek answers to questions we think are critical for responsible management of our natural resources. We work with scientists because we have learned that by working with scientists, we can answer questions that each of us alone cannot answer. Such questions may be “What are the impacts of certain types of perturbations on community structure? ” or “How can we preserve for future generations critical species, communities, and habitats?” Answers to questions such as these require partnerships with many scientists in many different disciplines.

The view I am going to give you today is the view of a person who is not in the laboratory, and who is not currently involved with a particular application of marine biotechnology. Nevertheless, I will reinforce the voices of many who spoke here who call for more basic research. I will describe a need for new biotechnologies to (1) better understand community structure and changes among its components; (2) study possible linkages of disease and die-offs with changes in microorganisms in the marine community; (3) detect perturbations to marine systems from anthropogenic activities; (4) study immune suppression in marine species; and (5) develop new genetic methodologies to establish origins and track the spread of exotic species.

Wildlife and Contaminants Program, World Wildlife Fund, Washington, DC



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 150
OPPORTUNITIES FOR ENVIRONMENTAL APPLICATIONS OF MARINE BIOTECHNOLOGY: PROCEEDINGS OF THE OCTOBER 5-6, 1999, WORKSHOP The Need for New Biotechnological Tools for Conservation of Marine Environments Michael Smolen World Wildlife Fund is a conservation organization. We do not have laboratories; however, we have active science programs in which we seek answers to questions we think are critical for responsible management of our natural resources. We work with scientists because we have learned that by working with scientists, we can answer questions that each of us alone cannot answer. Such questions may be “What are the impacts of certain types of perturbations on community structure? ” or “How can we preserve for future generations critical species, communities, and habitats?” Answers to questions such as these require partnerships with many scientists in many different disciplines. The view I am going to give you today is the view of a person who is not in the laboratory, and who is not currently involved with a particular application of marine biotechnology. Nevertheless, I will reinforce the voices of many who spoke here who call for more basic research. I will describe a need for new biotechnologies to (1) better understand community structure and changes among its components; (2) study possible linkages of disease and die-offs with changes in microorganisms in the marine community; (3) detect perturbations to marine systems from anthropogenic activities; (4) study immune suppression in marine species; and (5) develop new genetic methodologies to establish origins and track the spread of exotic species. Wildlife and Contaminants Program, World Wildlife Fund, Washington, DC

OCR for page 150
OPPORTUNITIES FOR ENVIRONMENTAL APPLICATIONS OF MARINE BIOTECHNOLOGY: PROCEEDINGS OF THE OCTOBER 5-6, 1999, WORKSHOP There has been much discussion today of remediation of oil spills, which is a single point source problem. However, dolphin deaths, coral die-offs, and eutrophication over a wide area are much more complex. Understanding the response of marine mammals, fish, and coral requires a better understanding of the normal processes and community structure to isolate and identify the causative agents. Most issues of environmental and conservation concern today are not as starkly simple as spilled oil. We lack the knowledge to understand the linkages from the lower scale of organization (e.g., viruses, bacteria, protozoans) and the dynamics that occur at this level. Finding linkages with changes at the lower scale will help identify effects higher up the scale, which might explain events like the marine mammal die-offs. There need to be discussions on the role of morbillivirus, red tide, or possibly other organisms in dolphin, manatee, and fish deaths. As many of you have stated here today, we also need a better understanding of the basic biology and processes in marine systems. Filling data gaps requires new biotechnology to collect and new ways to analyze these data. There is also a serious need for new biotechnologies that will yield new data and insights about community structure. Measurements that are cheaper, simpler, faster, and easier are needed. Applications that assess wider scales should provide a better picture of the events that actually occur over a wide geographic area, and new biotechnologies should better identify the causes of perturbations. It is important to identify these perturbations early to minimize the effects on communities and economies. Conservation questions involve both natural species and human societies living along the coasts of marine systems. Potential conflicts exist between human activities and processes in the natural marine systems. One area of concern is coastal mariculture. As a conservation organization, we must ask about the consequences of growing shellfish in a confined area: Because shellfish release chemical messages that coordinate and regulate reproduction at the population level, what effects do these high-density populations have on other naturally occurring species? Are they affecting the growth, reproduction, and population sizes of the natural populations? Marine aquaculture, such as salmon rearing, is another form of high-density farming along the coastlines. What are the effects on the marine communities from this style of farming and the nutrient enrichment associated with the feeding regimes? Are the natural communities in the bays, estuaries, and coastlines changing because of these anthropogenic activities?

OCR for page 150
OPPORTUNITIES FOR ENVIRONMENTAL APPLICATIONS OF MARINE BIOTECHNOLOGY: PROCEEDINGS OF THE OCTOBER 5-6, 1999, WORKSHOP These questions again point out the need for more basic research and the new biotechnological tools necessary to detect changes to community structure and function. Without such insights, we increase the risk of permanent wide-scale changes that will necessitate broad regulatory action. We need to better understand the immune system of fishes, mammals, and coral: Are the die-offs that we are seeing with greater frequency caused or enhanced because of immune suppression? There is a growing list of chemicals with varying degrees of biomagnification and persistence that can affect various components of the immune system. The competency of the immune systems of these species must be studied to determine whether changes in exposure increase their susceptibility to disease or parasites normally resident in the marine environment. Does immune suppression afford these pathogens the opportunity to have a greater impact? The speakers here today stressed that such questions cannot be answered without more basic information about the species. An additional focus on the new methodologies and tools is necessary to quantify changes in the immune system and to correlate this with the effects of perturbation. There is also a need to increase our understanding of marine community health and how we conserve community structure. Is there sufficient marine biotechnology to date that identifies all the primary producers? Can we readily identify changes occurring within the microorganisms? What are the potential effects, the projected effects, of perturbations to photosynthetic rates in phytoplankton? What does it mean to community structure? Is it a temporary effect or is it a persistent long-term effect? More attention must be given to the separation of effects of chemicals, UVB, habitat change, or fisheries management practices. Greater attention should be given to documenting effects through biomarkers. We must move beyond recording the presence or absence of agents, beyond recording simple concentrations of synthetic chemicals or patterns of distribution. Biotechnology must be developed to assist in linking the presence of such agents to effects on species and communities. New biotechnology is needed for better genetic identification. Exotic species are a growing threat, and we must seek a better and quicker method to identify them and determine their origins. As they come in on

OCR for page 150
OPPORTUNITIES FOR ENVIRONMENTAL APPLICATIONS OF MARINE BIOTECHNOLOGY: PROCEEDINGS OF THE OCTOBER 5-6, 1999, WORKSHOP ships to our harbors and waterways, we must identify them quickly, simply, and effectively to prevent them from altering our natural communities and local economies. Quick identification can lead to better management plans and strategic regulations. There are agencies that can implement such technologies and craft them into programs of vigilance; however, they do not have the means or budget to develop these new technologies. Lastly, there have been a number of appeals by those presenting today for increased educational outreach. There is also a need for more professional educational outreach, for new partnerships between the basic and applied scientists and for partnerships with conservation organizations. These three sectors have their particular strengths that must be shared if the marine coastal regions are to be fully understood and protected. Professional outreach is necessary to transfer the hard science into sound management practices. Likewise, the changes in the coastal communities must help to redirect science to ask new questions. This is best continued through basic science and regular discussions.