Skip to main content

Currently Skimming:

13 A Hand in Industry
Pages 241-253

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 241...
... "That's what most people in basic science overlook. If you do something and you want it to have importance, it has to mean something to the people." Asked once what he did with a problem that showed no promise of having practical applications, Bardeen smiled and replied, "I choose another problem.
From page 242...
... In 1945 Dessauer noticed a brief reference in Kodak's Monthly Abstract Bulletin to a process called electrophotography. Immediately struck by the commercial potential of this process, Dessauer brought the work to the attention of Haloid's president, Joseph Wilson.
From page 243...
... But the idea interested Russell Dayton at Battelle Memorial Institute, a small nonprofit research organization based in Columbus, Ohio. In the article that Dessauer read in Kodak's Monthly Abstract Bulletin, he learned that Battelle wanted to supplement its research into the electrophotography process by contracting with a larger industrial or university laboratory.
From page 244...
... " In the years when Haloid was growing into a Fortune 500 company, Bardeen consulted with its researchers on many scientific issues. For example, after selenium was selected as the photoconductor material, Bardeen made useful suggestions regarding particular design processes, such as reducing the time the photoconductor plate rests between copies (the "fatigue delay")
From page 245...
... " Bardeen's talks at Xerox often conveyed his philosophy that "invention does not occur in a vacuum." Most advances "are made in response to a need, so that it is necessary to have some sort of practical goal in mind while the basic research is being done; otherwise, it may be of little value." He recalled the period at Bell Labs before the invention of the transistor as a productive time, citing teamwork in the semiconductor subgroup as "the sort of basic research which should be done in industry." Referring to the Bell Labs mission of improving communication and to Mervin Kelly's goal in the late 1930s of replacing the relay and vacuum tube, Bardeen said, "Those doing basic research should be well aware of the long-range goals of the company and of the specific research
From page 246...
... " The example illustrated an important feedback loop in which product development feeds basic research and vice versa. Bardeen's many talks and writings about the relationship between science and industrial research express his commitment to the idea that the highest use of science is for the public good.
From page 247...
... In this way, by supporting fundamental research, corporations could avoid the "scientific dust bowl" that Brian Pippard alluded to in his famous 1961 talk "The Cat and the Cream." Above all, Bardeen emphasized the human aspects of science in industry, saying that "the most difficult to find are the peoplethe required leadership and qualified scientists." He encouraged industries to offer their best scientists freedoms comparable to those in academia. Bardeen pointed to Bell Labs' "enlightened research philosophy" as a desirable model.
From page 248...
... PARC had barely opened when the company faced new challenges. Xerox's key patent on selenium had expired, and the company's near monopoly on copy machines was threatened by the entry into the copier field of several other companies, including IBM and Eastman Kodak, who boasted new technologies that Xerox had yet to integrate.
From page 249...
... In the subsequent two decades the computer scientists at PARC developed much of the foundation for the coming computer revolution, including the Alto computer, the first graphics-oriented monitor, the first simple handheld "mouse" inputting device, the first home word-processing program, one of the first local area communications networks, the first object-oriented programming language, and the first laser printer. Why Xerox did not then succeed in leading the production and marketing of computers in the 1980s is an important story that is yet to be fully analyzed by historians of science and technology.
From page 250...
... When Nick Holonyak left the army in 1959 and went on to work at GE's research center in Syracuse, New York, he occasionally ran into Bardeen there when both were visiting GE's Schenectady laboratory. Holonyak noticed his mentor's name appeared on the same third-floor office door as the director of the semiconductor group.
From page 251...
... On October 6, 1989, Sony paid tribute to Bardeen and his scientific contributions to the electronics industry by endowing a $3 million chair at the University of Illinois in his name. Bardeen's old friend Makoto Kikuchi, the research director of the corporation, told reporters that the transistor was responsible for igniting modern technology.
From page 252...
... The goal was to assist industries in developing their research capabilities and bring them in touch with research at universities. As Bardeen explained to the Illinois Governor's Office, the center sponsored symposia on various topics and an industrial research visitors program in which scientists encouraged university relations with Midwestern firms such as 3M, Honeywell, and Delco.
From page 253...
... The university, in turn, gained jobs for its students and some incidental benefits, such as the occasional donation of a perfectly good piece of research equipment, abandoned because the company was updating its technology. Bardeen never stopped believing that free communication between academic and industrial scientists would result in the most rapid advancement of science and the greatest benefit to society.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.