Skip to main content

Currently Skimming:

4 Summaries of Presentations on Cross-Disciplinary Issues
Pages 35-61

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 35...
... PANEL DISCUSSION ON LEGAL AND POLICY ISSUES Introduction1 With regard to scientific data resources, most databases and data centers in China are managed directly or funded by government ministries and are subject to a relatively restrictive state information regime based on official secrecy requirements. This is a major challenge to the adoption of an open-access model because the past policies have been based on deeply rooted political, institutional, and cultural factors.
From page 36...
... A related and very significant problem exists in getting scientists to contribute the data produced in the course of their research to public repositories. Barriers include the lack of an appropriate data center in which to deposit the data, no requirement by the funding source to deposit the data or to share them openly, insufficient recognition of the importance of data activities by the scientist's institution, a lack of effective incentives or rewards to make the data available, the desire of researchers to sell their data at unreasonable prices despite very weak market estimates, inadequate funding to prepare the data sufficiently to make them usable by others, and a lack of training to do so.
From page 37...
... Newly emerging possibilities for enhancing this role of scientific data resources in the digital environment truly constitute another "endless frontier." High-level policy attention is necessary at the national and international levels in order to maximize the inherent value of data collections and to minimize the negative effects of restrictions on access and use. Indeed, many economic, legal, and technological restrictions have been placed on public-domain scientific data throughout the world.
From page 38...
... Finally, the recent enactment of a powerful new database protection statute in Europe and proposals for equivalent legislation in the United States and in other countries might be expected to push these tensions into other areas of public research, which up to now have been less affected by the proprietary pressures from the commercialization and privatization trends. A Contractually Reconstructed Research Commons for Scientific Data in a Highly Protectionist Intellectual Property Environment4 If the economic, legal, and technological pressures on public-domain scientific data that were identified in the previous section continue unabated, they will result in lost opportunity costs across the entire research enterprise.
From page 39...
... In the United States, for example, recent legislation has brought federally funded scientific data produced in universities that are used to support the formation of federal government regulations within the purview of the Freedom of Information Act (FOIA)
From page 40...
... Federal information policy in the United States is based on the premise that government information is a valuable national resource and that the economic benefits to society are maximized when taxpayer-funded information is made available inexpensively and as widely as possible. This policy is expressed in the Paperwork Reduction Act of 19959 and in Office of Management and Budget Circular No.
From page 41...
... Moreover, firms in emerging information-dependent industries seeking to utilize public-sector information find their business plans frustrated by restrictive government data policies and other anticompetitive practices. Recent economic research and initiatives at the European Commission, the United Nations Educational, Scientific and Cultural Organization, and the Organisation for Economic Co-operation and Development, as well as in individual countries, such as China's Scientific Data Sharing Program, are helping to create an international framework for open and global data sharing.
From page 42...
... Policy Considerations on Government Information Sharing in China11 Information policy research may be divided according to government, public, and commercial information. This section focuses on government information policies in China.
From page 43...
... The United States, the European Union, and China have different policies regarding access to publicly funded scientific data. The United States supports "full and open" access to many kinds of scientific data and considers publicly funded data as a public good.
From page 44...
... Therefore, from the beginning of the tenth Five-year Plan of the Chinese Communist Party, the SDAS has focused on research on data sharing policies with standard criteria, in addition to its data resources and system platform construction, to meet the growing external and interdisciplinary demand for data sharing through remote access, research collaboration, and information integration. Setting up sharing policies for the SDAS is a major project to promote scientific data exchanges, enable further applications, and establish a series of fundamental standards for continuous data development.
From page 45...
... has 36 field observation and research stations across China, and each station has produced a large amount of data through monitoring, experiments, and research. Users worldwide can share most of those data, in accordance with the CERN Data Sharing and Management Rule, which was issued in 2002 by the Chinese Academy of Sciences.15 This rule protects the rights of the data producers and permits these data to be shared widely, following the principle of keeping a balance between rights and obligations.
From page 46...
... endorses the timely sharing of research data to serve these and other important scientific goals, particularly research data from NIH-supported studies for use by other researchers. The NIH established new guidelines through its Data Sharing Policy, which became effective on October 1, 2003.17 The NIH expects timely release and sharing of final research data for use by other researchers.
From page 47...
... In contrast, while there are costs to gathering or creating information, the marginal cost of supplying this information to an additional consumer is small. In fact, with access provided on digital networks, this marginal cost of dissemination to each additional user is almost zero.
From page 48...
... The society journals also tend to maintain very high quality standards. The professional society journals also have some disadvantages, however.
From page 49...
... Electronic publishing has spawned an entirely new economic model for the sharing of scholarly research, just as the Internet has transformed other areas of commerce and information management. This model, known as open-access publishing, is predicated on the fact that an article published on the Internet can be read by ten readers or ten million with virtually no additional cost to the publisher.
From page 50...
... Ten years ago, the roles of these sectors in the United States were reasonably straightforward: government agencies collected observations and disseminated information to the public; academia used government-collected data for research; and private-sector organizations used observations collected by governments for developing information products targeted to paying customers. However, advances in science and technology have made it possible for private-sector organizations and academia to perform many government tasks, including collecting data, running models, and disseminating information.
From page 51...
... It concluded that establishing rigid boundaries between the sectors and defining what each should do is counterproductive. The Resolving Conflicts Arising from the Privatization of Environmental Data report examined these issues for all environmental data and provided criteria for purchasing data from the private sector and for transferring government data collection and product development to the private sector.
From page 52...
... 24Based on a presentation by Roberta Balstad, Center for International Earth Science Information Network, Columbia University, United States. 25The final Priority Area Assessment on Scientific Data and Information report is available from ICSU at http://www.icsu.org/1_icsuinscience/DATA_Paa_1.html.
From page 53...
... The number of permanent data archives will increase, which will increase the value of all archives connected on an interoperable basis through digital networks. Even if an appropriate archive exists, however, there are many reasons why scientists do not archive their data.
From page 54...
... Archiving should be required by the sponsor. Data archiving should be "in the plan" and resources available to support it.
From page 55...
... The efficient operation of information systems and effective communication with future data users are enhanced by minimizing the variation in the logic, concepts, and keywords used in the metadata. Some of the complexity is inherent to the variety of measurements and materials included in the research and cannot be avoided.
From page 56...
... Also include data format conversion software in data management suite, which is useful for migrating data from one storage technology to another. Finally, there are a number of best practices for preparing ecological and ground-based data sets to share and archive:28 Assigndescriptivefilenames; Useconsistentandstablefileformats; Definetheparameters; Useconsistentdataorganization; Performbasicqualityassurance; Assigndescriptivedatasettitles;and Providethenecessarydocumentation.
From page 57...
... Data archives for field observations must include additional design features to accommodate, but minimize and rationalize, this additional complexity. These features include a need to address multiple schemes for location information, temporary changes in methods, unmeasurable events, evolving reference lists, and a containment strategy for exceptions.
From page 58...
... Toward a Balanced Performance Appraisal System in the Digital Era for Data Archiving and Sharing in China30 Although data archiving and sharing are not new problems in China, they became worse with the advent of the digital era. Traditionally, the data producers and the data users were not very different in terms of their academic recognition and reputation.
From page 59...
... Therefore, it is critical to develop a more comprehensive and balanced performance evaluation system to foster and sustain digital data archiving and data sharing in China. Earth Science Data and Information Management in Western China31 Over the past few decades, the western regions of China have been the focus of important earth science research and a lot of earth science data and information have been accumulated there.
From page 60...
... A key element for success is good communication among those running the resource, who need to have diverse skill sets, and among every member of the team and the communities they represent. Community feedback must be 32Based on a presentation by Zukang Feng, Protein Data Bank, United States, available at http://www7.nationalacademies.org/usnc-codata/ZukangFengPresentation.ppt.
From page 61...
... Beyond all else is the need for good data and a robust data representation that is flexible enough to meet the needs of the changing science.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.