Skip to main content

Currently Skimming:

1 Introduction
Pages 9-20

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 9...
... The spill response community has worked to expand the subset of spill scenarios where effective response can be mounted, through improving the quality, and to some degree, the quantity of mechanical equipment available to respond to a spill, and training and coordination of efforts. In addition, other non-mechanical techniques have been developed and tested.
From page 10...
... that reduce interfacial tension between oil and water in order to enhance the natural process of dispersion by generating larger numbers of small droplets of oil that are entrained into the water column by wave energy. The small dispersed oil droplets tend not to merge into larger droplets that quickly float back to the water surface and reform into surface slicks.
From page 11...
... Approaches vary among countries, reflecting biophysical differences as well as differing cultural values regarding the appropriateness of using chemical dispersants to combat oil spills. FOCUS OF CURRENT STUDY Although the chemical processes by which dispersants work are generally well understood, their effectiveness is limited to varying degrees by the type of oil spilled and the environmental conditions at the time and location of a spill, as well as the timing and method of application.
From page 12...
... Of the 69 crude oil spills meeting their criteria, only 10 percent were greater than 3 miles offshore, thus dispersant use in nearshore waters will be a common consideration. While dispersant use generally presents greater risks in shallower, nearshore settings, the likelihood that untreated nearshore 1Conversions reported in the text conserve the number of significant figures of the original reported value using rules consistent with the NRC report Oil in the Sea III: Inputs, Fates and Effects (NRC, 2003)
From page 13...
... Thus, the increased complexity of dispersant use decisions in nearshore settings is accompanied by a greater need to make the most appropriate overall decision. SELECTING AMONG VARIOUS SPILL RESPONSE OPTIONS Approximately 3 million gallons (roughly 10,000 metric tons [tonnes]
From page 14...
... , there is still insufficient scientific information upon which to make decisions about likely benefits and consequences of dispersant use as an oil spill countermeasure. As previously stated, the fate and effect of chemically and naturally dispersed oil has not been well documented in field trials, although there have been several published intertidal studies in tropical (Tropical Oil Pollution Investigations in Coastal Systems [TROPICS]
From page 15...
... This current report is not truly an update of the 1989 report, as it focuses more BOX 1-1 Statement of Task Committee on Understanding Oil Spill Dispersants: Efficacy and Effects This study will review and evaluate existing information and ongoing research regarding the efficacy and effects of dispersants as an oil spill response technique. Focus will be placed on understanding the limitations imposed by the various methods used in these studies and to recommend steps that should be taken to better understand the efficacy of dispersant use and the effect of dispersed oil on freshwater, estuarine, and marine environments.
From page 16...
... Many readers may, therefore, find the assessments and summaries in Using Oil Spill Dispersants on the Sea of value. STUDY APPROACH AND ORGANIZATION OF THIS REPORT Despite the significant organizational and fiscal resources committed to responding to spills in the United States each year, fairly limited funding is available to support research geared to spill response or spill response decisionmaking.
From page 17...
... After some discussion during open sessions with federal and state resource trustees, representatives of industry, and sponsors of oil spill research, the committee determined that any recommendations for future work should be related to key decision points within the overall decision-making process used in spill contingency planning and during actual spill response. This grounding in the spill response decision process (discussed in Chapter 2)
From page 18...
... years, the Minerals Management Service has received approximately $2.3 million dollars, annually, for oil spill response. Approximately $900,000 per year is spent on research, while approximately $1.4 million is spent on the operation and maintenance of OHMSETT (the National Oil Spill Response Test Facility located in Leonardo, New Jersey; J
From page 19...
... Historically, the petroleum industry has supported research on dis persants as part of American Petroleum Institute (API) funded programs, R&D programs funded through spill response organizations such as the Marine Spill Response Corporation (MSRC)
From page 20...
... In addition, it includes an in-depth discussion of the current understanding of dispersant effectiveness and provides specific recommendations for developing an adequate understanding of effectiveness to support more informed decisions regarding dispersant use in nearshore settings. Chapter 4 explores physio-chemical and biological processes that control the dispersion and fate of oil droplets and thus constrain the concentrations of various petroleum compounds in the water column.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.